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Abstract

This final report covers the results of investigations extending over the period 15 Jan
2000 — 30 Nov 2002. The repott consists of two parts, in Part 1 a computer model of a
vircator developed at the Texas Technical University is developed using a powerful code
called MAGIC. Part 1 ends with design ptoposals leading to an increase in power output
of 52 %. Part 2 is ptimatily concerned with the influence of an axial magnetic field on the

petformance of a coaxial vircator, including stability investigations.
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Summary

This is the Final Repott covering the results of investigations extending over an
approximately three year period, 15 Jan 99 — 30 Nov 2002. The Report is divided into
two parts. In Part 1 computer model of a coaxial vircator is discussed in some detail,
whereas Part 2 is solely devoted to the investigation of the effect that an axial magnetic

field has on the performance of such a vitcator.

In Part 1 2 powerful computer code called MAGIC is used to model a coaxial vircator |
under development at the Texas Technical University (TTU) in Lubbock, TX. This
required close collaboration with the team at TTU developing the device and involved
exchange visits. The first seven months were spent on establishing the contact and
developing an early computer model of the device. In the following petiod of 12 months
the model was refined by incorporating ongoing design changes inttoduced at TTU. This
directly led to improved accuracy of modelling, the frequency of oscillations and the
output power now being reproduced to within + 5%. The remaining period of 16
months was devoted to some additional design alterations and a detailed investigation of
the interaction process at the electron cloud level. With a better understanding of the
operation of the vircator it then proved possible to improve the power output of the

device by 52 % by redesigning the sensitive anode area of the tube.

In Part 2 the effect of an axial magnetic field on the petformance of an axial vircator is
discussed in considerable detail, the results of the investigations confirming the

expectation that the magnetic field hinders the performance of the device. In the process




careful analysis of a conducting magnetic diode has been performed, revealing some
hitherto ovetlooked solutions resembling those obtained in the absence of the magnetic

field.

The report ends with suggestions for future work based on the results of the above

investigations.

It should be added that the above investigations generated two papers (one of them in a
special issue on High Power Microwave Generation) and five contributions at

international conferences.




Part 1.

1.1 General Introduction

All our investigations have been carried out in close cooperation with a research group in
the Department of Electtrical Engineering and Physics at Texas Technical University in
Lubbock, TX; the teseatch group under the leadership of Prof. Magne Kristiansen was
then in the process of developing an axial vitcator [1,2] and our task was to provide a
suitable computet modelling suppott, primatily by using MAGIC [3]. Since this was a
coopetative effort, it proved important to establish a close contact with our colleagues at
TTU. We did that even before submitting out proposal. Our friends in Lubbock helped
us greatly by sending us engineeting drawings covering the design of their vircator tube
and we in turn included some of the drawings in our Proposal. We then met some
members of the group, in particular Prof. M. Kiristiansen, at the ICOPS99 conference in
Monterey, CA. Since the award of the grant, we have further developed our contracts by
one of us (X. Chen) visiting Lubbok early in June 2000 after attending the ICOPS 2000
conference in New Otleans, LA. The visit proved to be most valuable, since in computer
modelling it is always important to see the relevant device i situ, possibly when actually
operating. Dr. Chen was warmly welcomed and the hosts went out of their way to help
and make the visit well worthwhile. In turn this greatly speeded up the process of setting
up the cotrect computer model on the equipment at QMUL. In November 2001 we had
the pleasure of a visit from Prof. M. Kristiansen, who was touring Europe. This gave us
the oppottunity of introducing the staff involved in computer modelling and show the
substantial computer facilities available at QMUL. Finally in April 2002 Dr Chen and Mr
Toh, a post graduate student chiefly involved in the vircator modelling, visited TTU on

the way back from IVECO02 conference in Monterey, CA.




Virtual Cathode Oscillators (vircators) have been studied quite extensively over the last
two decades [4-6]. In principle a vircator employs an intense, mostly relativistic electron
beam, the density of the beam greatly exceeding that in a space-charge-limited diode
[7,8]; this leads to the formation of an unstable virtual cathode, which then generates
relaxation oscillations. In practice the device is capable of generating pulsed power at
levels of several GW and in the GHz range of frequencies. The main merit of a vircator
is its simplicity of construction, the device in principle comprising a cathode, a
semitransparent anode, usually in the form of a metal mesh, followed by an output
waveguide and a window, as shown schematically in Fig. 1, no magnetic field being
required. Since a vircator uses a low impedance relativistic electron beam, theoretically
there should be no limit to the power level at which it can operate, nonetheless its
inherent broadband characteristic and a wide spread of electron enetgies renders it an
oscillator of low electronic efficiency, usually below 5%. Thus the principle of generating
microwave radiation using virtual cathode oscillations is conceptually quite simple,
however the actual process is highly non-linear. Consequently all the earlier attempts at
mathematically analyzing the interaction process suffered from a number of limitations
[1,4,9-14]. It would appear therefore that computer modelling presents a better method

for the study and understanding of vircators.

As a first step in our modelling it seemed prudent to agree on the basic geometry of the
TTU vircator. Following Fig. 4 of ref. 1 and some additional discussions during our visit
to Lubbock, the basic dimensions of the device, as shown in Fig. 2, have been
established. Here the cathode and the anode ate respectively in the form of two coaxial
and partly ovetlapping cylinders. This constituted an important development of a simple
axial vircator and it has been initially suggested some time ago by the Russians [17]. The

advantages of such a system are twofold: on the one hand the area where the virtual




cathode is likely to be formed is better defined and hence easier to control, on the other
hand the genetation of a hollow beam removes some of the power limitations imposed
by the existence of a solid beam. The dimensions of the two overlapping cylinders are as
follows: the outer cylinder of 130 mm radius acts as a cathode and has a 3 cm wide velvet
band on the inside acting as an emitter. The inner cylinder of 100 mm radius acts as an
anode and is made from a 10 um thick aluminum foil; the anode then continues as a
cylindtical output waveguide of 98 mm internal radius. A 500 kV, 30 ns Gaussian pulse is
applied to the diode section of the tube. Microwave oscillations are then generated near
the cathode/anode section, the mictowave radiation traveling down the output
waveguide for some 1600 mm. The waveguide is supported at one end by a vertical
flange and at the other end it has a plastic window which is permeable to microwave
radiation. In addition a number of thin axial rods are placed on the inside of the anode
drum to suppott the foil. They will be ignored in our model since they merely affect the

degree of transparency of the anode and form an integral part of it.




1.2 Eatly investigations — 2D model

Eatly investigations cover the period of approx. seven months, from the beginning of the
grant on 15 January 2000 till 31 July 2000. In our original Proposal under the heading
‘Statement of Objectives’ we have indicated that during the fitst year of the investigations
we intend to establish close co-operation with our colleagues at TTU and using MAGIC
set up a computer model of the vircator. We have completed the initial part of this task
in the fitst seven months of our investigations and a brief summary of the results is given
below. In this we have used the 2D version of MAGIC for the sake of simplicity. As
pointed out in Section 1.1 it took us some time to develop the computer model based on
Fig. 2, MAGIC being quite an elaborate code. We then decided to perform a number of

simple tests.

1.2.1 Pulse delay

We noticed in Fig. 6 of ref. 1 that there was a time delay of some 20 ns between the
electron-beam and microwave power pulses, the latter being measured with a probe near
the output window. Using MAGIC we have decided to model this particular aspect of
the system by obsetving the propagation of a wavepacket down acircular waveguide.
Here the wavepacket is supposed to represent a mictowave pulse. The waveguide was
chosen to have the same dimensions as the cylindrical output waveguide of the vircator.

Also, following ref. 1 it was assumed that the waveguide operated in the TE11 mode.

A Gaussian 2 GHz microwave pulse was then applied to a suitably placed dipole at one
end of the waveguide. The corresponding transit time measured at the other end was

Tpod = 0-44 ns, the theoretical value for a TE11 mode being 7. i =35.60 ns (the

model

actual computations appear on p. 6 of ref. 18); as mentioned above the experimental

10




value of the delay was 7,,, =20 ns. The difference between the two sets of results could

be explained by the fact that in practice it takes approx. 5-10 ns for the microwave pulse

to be formed and the oscillations to begin.

This simple measurement acted as a primitive test of our model and also confirmed our

correct use of MAGIC.

1.2.2 Frequency spectrum

Having gained some confidence in the more rudimentary performance of our model we

then decided to investigate the actual microwave output and its frequency spectrum. The

radial field component E, as a function of time and the corresponding FFT are

respectively shown in Figs. 7 and 8 of ref. 1, the measurements being taken with the help
of a probe 8 mm long situated 1.5 m down the waveguide. In our simulation experiment
we have managed to repeat the above result with limited degree of accuracy. Since the
vertical scale in Fig. 7 of ref. 1 is not marked we could not compare the amplitude of
oscillations with our Fig. 3a, but the waveform of the microwave output is faitly similar
in the two cases. The FFT of the output waveform is shown in Fig. 3b. We find that the
largest frequency peak occuts at 2.7 GHz as against 2 GHz in Fig. 8 of ref. 1. The
difference of 35 % is almost certainly due to some structural simplifications of the eatly
model and possibly due to the use of a 2D version of MAGIC. As we shall see later this

difference was finally reduced to 2.5 % when we have used a more detailed model and a

3D version of MAGIC. As an additional precaution we moved our E, observation point

from the circumference to the centre of the waveguide, but the results were similar to

those shown in Figs. 3a and b.
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1.2.3 Output waveguide

As one more preliminary test of our model, we investigated the electromagnetic field
distribution inside the output waveguide. We noted that the mode pattern remained faitly
cohetent only at the beginning of the pulse and it disintegrated quite rapidly afterwards.
This was to be expected for two reasons: vircators are well known for their broad-band
output, Fig. 3b being a good example. Secondly, as has been pointed out before the
output waveguide is heavily overmoded, a situation which encourages the transfer of

energy to higher order modes.

We find from Figs. 4a and 5a that in the eatly stages of oscillations the two dominant

modes appear to be respectively TMO1 and TEO1. The eatly appearance of the TMO01

mode should not surptise us in view of the existence of a strong E, field component

near the anode surface. The appearance of the TEO1 mode could be caused by some
asymmetry in the virtual cathode region giving tise to azimuthal components of the
electric field. Howevet it is not clear how it could be generated in our model, since at this
stage we have been using a 2D version of MAGIC. However, the above results differed
from the experimental probe measurements at TI'U, where they wete inclined to deduce
the presence of a TE11 mode at the end of the waveguide. The test also confirmed the

versatility of MAGIC as a computer code for modelling microwave devices.

12




1.3 Intermediate investigations

1.3.1 Introduction

Intermediate investigations cover the second year of the grant, starting on 1 August 2000
and ending on 31 July 2002. In order to improve the convergence of our results with
those obtained at TTU we have catefully incorporated in our model all the structural
changes dictated by expetience and introduced by our colleagues at TTU during the first
seven months of our cooperation. In addition we gained enough confidence in using
MAGIC to change from 2D to 3D. As we shall see both changes had quite a dramatic

effect on the accuracy and reliability of the results.

1.3.2 Improved TTU vircator model — 3D model

1.3.2a Design alternations

A number of alternations in the design of the vircator have been introduced at TTU
during the first seven months of our investigations, the final design of the important gun
section being, shown in Fig. 6. In patticular a rectangular septum has been added in order
to improve the performance of the device. The corresponding model of the final version
of the device is shown in Fig. 7a, the septum being shown separately in Fig. 7b. The
overall system now consists of a Marx generator followed by a pulse forming line
feeding two coaxial electrodes through a spark gap. The vircator itself comprises a
coaxial diode in the form of a metal cylinder supporting a velvet emitter of 132 mm
inner radius and an internal cylindrical anode made from a stainless steel mesh of 60
% transparency and of 98 mm radius. At one end the mesh anode is strengthened by a
metal wire ring (wire radius 2.5 mm) and at the other end it is attached to a flange and

a 1.5 m long cylindrical waveguide which has an output window at the far end. Two

13




orthogonal probes are placed at the end of the waveguide for both mode detection and

power measurement.

In operation a single pulse of 500 kV and 70 ns duration is applied across the
electrodes. Typical experimental input voltage and current pulses are shown in Fig.
22, where the measured peak values are respectively 731 kV and 36.7 kA. An
indication of the input impedance is obtained by dividing peak voltage by peak
current which gives 19.9 Q. Fig. 23 shows typical experimental input and microwave
output power pulses, their respective peak values being 24.7 GW and 558 MW. The
quality of our computer modelling using MAGIC will be judged by the‘ degree of

convergence with the above parameters.

1.3.2b Computational details

Let us now consider some computational details of the simulation process. The MAGIC
code is very flexible and therefore well suited to achieve the required accuracy. Since the
vircator exhibits a large degi:ee of axial symmetry it was natural to choose polar (t,¢,z) co-
ordinates for our modelling. Since we are now using a 3D version of MAGIC the total
number of cells has gone up by a factor of 80, which is approx. the number of cells in the
azimuthal direction. Although the size of 8¢ and 8z cells is fixed, the 3t cells can be graded
by choosing smallet values in regions of special interest. The choice of cell size governs the
maximum permissible time step which for reasons of stability must satisfy the COURANT

criterion

2=} (5t) —— <1 (1.1)

(s)
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(6s)2 = (5r)2 +(rc§'gr))2 +(5z)2

Hete c is the velocity of light and 6t the time step. Since the total number of cells is quite
large, the overall time of a simulation run frequently last as much as 24 hours, even with

powetful modern PC computers.

In practice the emitter is in the form of a bobin of velvet glued to the inside of the
cathode cylindet, its action being that of a field emitter. The EXPLOSIVE EMITTER
command in MAGIC is well suited to simulate the performance of such a cathode. In
our model it is assumed that the thickness of the emitter and its emission efficiency are
both uniform around the circumference. The anode of the vircator is in the form of a
light metal mesh supported by eighty thin metal rods (not shown) and a thick metal ring.
The simulation of the anode structute is based on another MAGIC command called
FOIL, the command ensuting 60 % transparency to the electron stream in close

agreement with experimental results.

In order to improve the performance of the vircator a rectangular septum has been
introduced, as shown in Figs. 6, 72 & b. In principle thete ate two ways of modelling the
septum: we can use either Cattesian, Fig. 8a or polar coordinates, Fig. 8b. When
Cartesian coordinates are used, the septum has smooth edges but the cylindrical walls of
the waveguide are quite rough, the accuracy of modelling now strongly depending on the

size of x and dy cells. In polar coordinates, the cylindrical walls remains smooth, but the

shape of the septum is now critically dependent on the size of 8¢ and 3t cells. Since we

have decided to use polar coordinates anyhow, it was only natural to follow Fig. 8b in

15




modelling the septum. Also the angular cell size 8¢ was chosen to be 0.0785 radians,
which cotresponds to 80 cells around the circumference of the cylinder. The use of 80
cells for the angular resolution, together with a large number of 8r and 8z cells required

computer runs often in excess of 12 hours.

We now have to consider the problem of power supplies and the modelling of the feed
system. At TTU a Marx generator supplies a 500kV, 70 ns pulse. In our simulations we

use a voltage pulse of the same amplitude but with an exponential tise time given by
V(t)=V, (l —exp (—t/TO)), V, =500kv, T, =4.0 ns 1.2)

followed by an abrupt fall. Figs. 9a-d show different ways of connecting power supplies
to the system. The first three have been rejected in favour of the fourth, since they are
too near to the excitation (virtual cathode) region and additionally in Fig. 9c, the feed is
orthogonal to the desired direction. Accordingly Fig. 9d with its coaxial feed geometry
and clear separation from the general excitation region is the preferred method. Here the
length of the separate feed channel needs to be taken into account when comparing the

delay between the excitation and the output pulse appearing at the end of the waveguide.

Lastly let us consider TTU measurement techniques. Two perpendicular probes situated
1.5m down the wave guide wete used to monitor the output with the help of a Hewlett
Packard 8GHz digital oscilloscope HP54720D and an HP8719C network analyser. The
microwave power genetated by the vircator was then obtained by taking into account the
attenuation of the probes, the cables, the connectors, the fixed attenuators and the crystal

detectors. The cotresponding frequency spectrum was obtained by applying a fast
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Fourier transform (FFT) to the waveform directly recorded by a digital oscilloscope. As

an example typical experimental results obtained at TTU are shown in Figs. 10a and b.

At this point we should compare Figs. 3b and 10b, the difference being mostly due to the
introduction of the rectangular septum. The effect is quite dramatic, the frequency
spectrum in Fig. 10b being much cleaner than in Fig. 3b, the septum presumably acting
as a quasi-cavity. At the same time the main resonant frequency was shifted downwards

from 2.7 to 1.834 GHz.

1.3.3 Testing of the new model

Having obtained information on the latest changes in the design of the vircator, as
explained in Section 1.3.2a, we have decided to put our new model to the test by
repeating the latest results conveyed to us by the TTU team and respectively shown in

Figs. 10a & b.

1.3.3a Power and efficiency

Let us considet a patticular simulation run, using the feed system of Fig. 9d where a
voltage of 500kV would be applied between cathode and anode resulting in an input
power characteristic shown in Fig. 11; here the value of T, in (1.2) was chosen to be 4.0
ns(tise time characteristic), the input reaching a steady state input power of 7.80 GW. In
Fig. 12 we have the microwave output power measured over the cross-section of the
waveguide near the window. There is a delay of some 20 ns in the rise of output power
due to the time it takes for the pulse to travel from the generator through the coaxial
feed system, the emitter anode space and along the waveguide, before reaching the

observation probes. The shape of the output power pulse roughly follows that of the

17




input power. Taking the value of 160 MW for the output power the device efficiency is
of the order of 2.0% — a typical figure for a vircator and very close to the experimental

value quoted by TTU (see also Fig. 23). The resulting radial component of the electtic
field E, at a point near the centre of the exit plane of the waveguide can be seen in Fig.

13a, its frequency spectrum (FFT) being shown in Fig. 13b.

The above tesults allow us to compatre the experimental and simulation performance of
the device. In Figs. 10a and 13a, we have the electric field component E, at the output
plane. Allowing for the fact that a Gaussian-shaped input voltage pulse was applied in the
experimental case and a steady voltage reached by an exponential rise in the simulation
runs, there is reasonable agreement between the two results. Figs 10b and 13b
respectively show frequency spectra of the two cases. It can be seen that not surptisingly,
a ‘cleaner’ response is obtained in computer simulation than in the actual experimental
results; also the main resonant frequencies agree remarkably well to within 1%. All this
indicates that good accuracy can be obtained by using MAGIC for modelling the

operation of a vircator.

- 1.3.3b Size of cathode to anode gap

In this brief test we have investigated the influence that the size of the cathode to anode
gap has on the frequency of oscillations. In order to allow for the thickness of the velvet
emitter its height was set to be equal to two radial cells, as show in Figs. 9a — d. However,
this effectively reduces the cathode to anode gap by ~ 1.0 cm and causes an upward shift
in the oscillation frequency [19]. We have therefore decided to investigate the effect, the

results being summarised in Table 1.1.
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Table 1.1 Effect of the cathode to anode gap on the resonant frequency.

Height of emitter 1.0cm (two cells) 0.5 cm (one cell) 0.0 cm (0 cell)
Cathode/anode gap | 3.2 cm 3.7 cm 4.2 cm
Main frequency 1.988 GHz 1.963 GHz 1 1.816 GHz

One can see that the operation frequency of the vircator is critically dependent on the
size of the cathode to anode gap. When the gap is close to that in the experimental set
up (zero height of the emitter), we find from Figs. 10b and 13b that the simulated

frequency agrees to within 1% with the measured one.

1.3.3c Presence of the anode ring

A thick metal ting is mounted at the far end of the support rods (not shown) to add
strength to the fragile anode mesh, as shown in Figs. 6 and 7a. When the ring is removed,
there is a slight upward shift in the resonant frequency, as shown in the last line of Table

1.2,

Table 1.2 Frequency shift when the anode support ring has been removed.

Height of emitter 1.0 cm (two cells) 0.5 cm (one cell) 0.0 cm (0 cell)
Cathode/anode gap | 3.2 cm 3.7 cm 4.2 cm
Main frequency 2.138 GHz 2.045 GHz 1.853 GHz
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Again we find that the removal of the anode support ring has a direct bearing on the
resonance frequency of the vitcator. The results of Tables 1.1 and 1.2 are plotted in Fig.
14. One can see that the size of the cathode/anode gap would affect the transit time of
the electrons and thus the oscillation frequency of the vircator. Similarly the presence or
absence of the suppott ring would strongly affect the electric field in the sensitive
interaction region of the vircator and thus influence the electron dynamics of the system.
Thus, as was to be expected, the above investigations have confirmed the fact that the
opetation frequency of the vircator is critically influenced by the fields prevailing in the
interaction region and the related electron dynamics (see also Section 1.3.3d and 1.4.1).
This point further emphasizes the difficulties associated with attempts to investigate the

petformance of a vircator analytically (see also Section 1.4.2d).

1.3.3d Position and size of the septum

As shown in Figs. 6 and 7a, b a rectangular septum has been added to the TTU vircator.
In general a septum can be regarded as a circuit element designed to improve the
petformance of a vitcator by forming a quasi cavity. In Fig. 6 the distance between the
vertical part of the cathode structure and the septum is 11.4 cm; this would constitute a
half-wavelength at 1.59 GHz (TE11 mode) or at 1.76 GHz (TM01 mode), the latter
being nearer to both measured and simulated values. There are however other factots to
be taken into consideration, ptincipally the presence 80 very thin anode supporting rods
(not included in the model) and the electron cloud which would alter the resonant

frequency by introducing a reactive term.

A number of computer runs have been made with the septum at different positions

along the anode, the results being summarised in Table 1.3 and Fig. 15.
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Table 1.3 Effect of septum position on the resonant frequency.

Location of | 4.6cm 5.6cm 6.6 cm *7.6 cm 8.6 cm

the septum

‘cavity’ 14.4cm 13.4 cm 124 cm 114 cm 10.4 cm
length

Operation 1.755 GHz | 1.772GHz | 1.806 GHz | 1.816 GHz | 1.858 GHz
Frequency

* The original location in TTU experiments

The shift in frequency is as we would expect — a decrease in frequency is associated with

an increase in the length of the ‘cavity’ formed between the cathode base and the septum.

This simple test confirms that in the presence of a septum the resonant frequency of the

vitcator critically depends on its position along the axis of the tube.

Another septum featuring a larger area and a smooth edge, as shown in Fig. 16, has also

been examined. A brief compatison of the results is given in Table 1.4.

Table 1.4 Effect of the septum size on the operation of the vircator.

Septum size Original Large
Spectrum 1.816 GHz 1.882 GHz
Efficiency 2.05 % 1.54 %

The cotresponding frequency spectrum with the new septum in place is shown in Fig. 17;

the output is rather disappointing, showing a pronounced peak at 1.667 GHz in addition

to the main resonant frequency at 1.882 GHz. Also, the efficiency has fallen from the
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usual value of 2.05 % to 1.54 %, probably due to excessive blocking of the RF power

transmitted down the waveguide (impedance mismatch).
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1.4 Final Investigations — 3D model

This petiod covers the last 16 months of our investigations, that is from 1% August 2001
till 30 Nov 2002. We have now reached a stage when our confidence in the reliability of
our model was sufficient to attempt an overall simulation of the performance of the TTU

vircator

1.4.1 Size and position of circular septum

1.4.1a General comments

Dutring our visit to TTU at the end of April 2002 we have been asked to investigate the
effect of a septum in the form of a circular disc with a rectangular cut-out, on the general
petformance of the vitcator. This request was very much in line with our overall desire to
bting investigations based on computer modelling and MAGIC as close as possible to
the design requirements of the device and thus to achieve the main objective of being
able to treat computer modelling as a genuine design tool. This can only be achieved
when the code, in our case MAGIC, reaches a sufficient degree of sophistication and

reliability to be able to replace machine modelling.

1.4.1b Dimensions and the simulation setup

An axial cross-section of the interaction region of the TTU vircator with the new septum
is three different positions are shown in Fig. 18a where the dimensions (in mm) and
relative positions of the cathode cylindert, the electron-emitting strip of velvet and the
anode ‘cage’ are cleatly indicated. Here the output waveguide is shown on the extreme

right, its diameter as usual being the same as that of the anode cage.
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The septum, which is in the form of a circular disc with a rectangular cut-out is shown in
Fig. 18b. The thickness of the disc and the height of its rectangular cut-out are both
fixed, but the width of the cut-out can vary between 10 and 50 mm. The three different
positions of the disc relative to the flange are: 0.0 mm (right), 40.6 mm (middle) and 89.5
mm (left). Thus we are going to consider three different positions of the septum and four
different widths of the rectangular cut-out, i.e. 3 x 4 = 12 different situations, as shown

in Table 1.5

1.4.1c Simulation results

An overview of out simulation results is provided in Table 1.5 where the peak output .
power and the cotresponding frequency of oscillations are shown as functions of the
position of the septum and the corresponding width of the rectangular cut-out. In all

cases the input power has been kept constant at 26 GW, which corresponds to an input

impedance of 16.7 Q.
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Table 1.5 Peak ontput power and frequency as functions of position of the circular septum and the width

of its rectangular cut-out.

Input Input | Input Peak Power Output

Voltage | Current | Power Frequency
50mm Slot Left 650kV [ 39kA |26 GW 350 MW 2.074 GHz
50mm Slot Right | 650kV | 39 kA | 26 GW 280 MW 2.171 GHz
50mm Slot Middle | 640kV | 40kA |26 GW 175 MW 2.106 GHz
30mm Slot Left 640kV | 40kA |26 GW 200 MW 2.074 GHz
30mm Slot Right | 650kV | 39 kA |26 GW 150 MW 2.161 GHz
30mm Slot Middle | 650kV | 39kA |26 GW 140 MW 2.051 GHz
20mm Slot Left 640kV [40kA |26 GW 140 MW 2.081 GHz
20mm Slot Right | 650kV | 39kA |26 GW 62 MW 2.174 GHz
20mm Slot Middle | 650kV | 39 kA |26 GW 80 MW 2.057 GHz
10mm Slot Left 650kV | 39kA |26 GW 60 MW 2.078 GHz
10mm Slot Right | 660kV | 38 kA | 26 GW 30 MW 2.168 GHz
10mm Slot Middle | 650kV | 39 kA | 26 GW 58 MW 2.042 GHz

1.4.1c1 Influence on the output power

We find by varying the width of the rectangular cut-out, Fig. 18b, that the best results ate
obtained for the biggest size of the slot (50 mm width), when the peak output power is
the highest, the opposite being true for the smallest size of the slot (10 mm width). Also
we can see from Table 1.5 that placing the disc on the left (i.e. 89.5 mm away from the
flange) again yields the best results; the peak output power drops down substantially
when the disc is moved neat the flange and it drops even further when the disc is placed
in its ‘middle’ position (40.6 mm away from the flange), the three different positions

being shown in Fig. 18a.
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The first of the two effects is easy to understand, since a small slot prevents the flow of

1.f. power towards the output, the disc beginning to act as a metal reflector. The second
effect is more difficult to unravel — it is probably closely related to the mode pattetn as
it gradually develops at the build-up of oscillations; one could also think about it as a

form of impedance mismatch.

1.4.1¢c2 Influence on the frequency of oscillations

Figs. 19a and b respectively show the E-field and its FFT obtained in the usual place Le.
near the end of the output waveguide. Here we have chosen the optimum conditions of a
disc with a 50 mm wide slot and in its left position, i.e. 89.5 mm away from the flange,

Table 1.5.

At this point it is interesting to compate the different geometries of a septum and the
cotresponding influence they have on the petformance of a vircator. If we look at Figs.
13a, b which refer to the rectangular septum and Figs. 16a, b which represent the circular
septum, then it is clear that in both cases the output is much steadier, the cotresponding
frequency spectrum being much cleaner than that obtained for a vitcator without a
septum of any form, Figs. 3a, b. However the effect that a septum has on the resonant
frequency seems to depend on its geometry. In the case of a rectangular septum, the
tesonant frequency is shifted down from 2 GHz to 1.82 GHz; at the same time its value
strongly depends on the position of the septum along the axis, Table 1.4. In the case of 2
citcular septum the resonant frequency is moved upwards from 2 to 2.07 GHz, its value
being only slightly affected by the axial position of the septum or the size of its

rectangular slot, the total variation being less than 6 %, as can be seen in Table 1.5.
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Finally Figs. 20 and 21 show the actual r.f. output power respectively for a circular and a
rectangular septum. We can now see quite cleatly that, although in the presence of a
citcular septum the vircator oscillates more smoothly for some 60 ns, its peak output
power is only 350 MW; on the other hand in the presence of a rectangular septum the
peak output power reaches 600 MW but only for some 20 ns, the output being somewhat

less stable.

Thus with the aid of the cavity-like co-axial geometry of the vircator and by introducing a
septum within the anode mesh, one can achieve a reasonably well defined resonant
frequency at the output end of the waveguide, as shown in Figs. 13a, b and 16a, b. It
would appear that septa have the effect of absorbing stray electrons that hinder clean
virtual cathode oscillations. This suggestion is strongly supported by our detailed

investigations of electron trajectories described in Section 1.4.2d.

1.4.2 Final model of TTU vircator

1.4.2a Introduction

As we pointed out before the ptinciple of generating microwave radiation using virtual
cathode oscillations is conceptually quite simple [1,2,4-6,9-15], however the actual
process is highly non-linear; it is therefore singularly difficult to treat it analytically. It
seems that computer modeling presents the only viable method for the study and
understanding of the vircator interaction process. We have therefore decided to
concentrate in this section on modelling in some detail the cathode/anode area where the
main interaction process is taking place. We are fully aware of the fact that in the past
[1,4,9-14] some efforts have been made to simplify matters by assuming that in principle

~ there are two types of interaction going on at the same time. An oscillation due to
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forward and backward movement of electrons between real and virtual cathodes, the
semi-permeable anode being situated in-between and a sort of ‘plasma-frequency’
oscillation due to the movement of the virtual cathode itself, mostly in the form of space-

chatge density fluctuation around its theoretical saturation point. The two cotresponding

frequencies, usually referred to as f,,, and f,, invariably differ by a latge factor and any

attempts to use either as an expected vircator frequency of oscillations have not been
very successful. The best one could say is that the actual frequency of oscillations occurs

in the following range [1,4,10]

22f, < foo <271, (1.1)

We will see mote cleatly later on some reasons for the above discrepancy.

A close observation of the interaction process as displayed by the computer model
revealed that, as pethaps we should have expected, the movement of electrons is much
more complex than it was generally assumed. Certainly in the case of a coaxial vircator
there is a strong whitl-like motion around the metal ring situated at the end of the anode
cage, Figs. 27a-f. This motion cleatly affects the frequency at which the virtual cathode
oscillates around its saturation point. In addition we have a marked axial component of
current, both inside and outside of the anode cage. In fact the electrons forming the

space charge appear to be divided into three groups:

e those intermittently forming a virtual cathode on the inside of the anode,

e those in axial circular motion hugging the anode or whirling around the support

ring and
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e the ‘rogue’ or stray electrons which move towatds the output waveguide and thus
remove energy from the interaction mechanism and lower electronic efficiency of

the power conversion process.

Having obtained some insight into the complexity of the interaction process we were
then able to improve the efficiency of the device by trying to get rid of the rogue
electrons. As explained in Section 1.3.3d this was achieved by altering the design of the
anode and introducing a carefully shaped septum placed inside the anode, Figs. 28a and
b. The septum succeeds in trapping the stray electrons which intern increases the

mictowave power output by some 52 %.

1.4.2b Input and output pulses

As a first step in our simulation process we have decided to repeat the results shown in
Figs. 22 and 23. Introducing absorbing boundaries at both ends of our model and
applying 500 kV pulse of 70 ns duration, we have obtained simulated input voltage and
current as functions of time, as shown in Fig. 24. The peak values of 730 kV and 38.4 kA
are within 1 — 5 % of the measured values shown in Fig. 22. The contour of the
measured pulse is much mote rugged than that obtain by simulation, but this tends to be
true of many simulation processes, the rugged shape being influenced by local

construction details not included in the model (e.g. the thin rods suppotrting the anode).
Again dividing peak voltage by peak current we obtain 19.0 Q, which is within 5 % of the

measured value.

Let us now consider the simulated input and microwave output power, as shown in Fig,

25; we find that their respective peak values are 25.8 GW and 600 MW, Poynting’s
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theotem being used to obtain the simulated output microwave power. The computed
peak values are again within 5-8 % of the measured values shown in Fig. 23. Both sets of
results show two distinct peaks in the microwave output power; this could well be due to
some impedance mismatch in the dynamics of virtual cathode oscillations. Also the range
of small fluctuations in the computed output is typical of mode overlap in the heavily
overmoded output waveguide. We find from Fig. 23 by dividing peak output by peak
input powet that the electronic efficiency of the tube is of the order of 2.3 %, which is
usual for vircators. The cortesponding simulation value obtained from Fig. 25 is also 2.3
% in close agreement with the measured value. This further supports our confidence in

the adequacy of our modelling process.

Finally we note that thete is a natural time delay between the input pulse measured near
the cathode/anode space and the output power measured near the end of the waveguide,
Figs. 23 and 25. In the computer model shown in Fig. 25, the delay is approx. 13 ns and
it can be accounted for by the time it takes the pulse to travel down the system.
(Analytical expressions for the time of travel cannot be easily obtained because the
output waveguide is heavily overmoded). The measured delay, Fig. 23, is somewhat
longet and of the order of 20 ns, probably due to a slower build up of oscillations than

ptedicted by the model.

1.4.2c Frequency spectrum

The simulated frequency spectrum is shown in Fig. 26. It was obtained by applying FFT
to the output from an E-field probe situated near the window of the output waveguide.
We find that the main resonant frequency occuts at 2.108 GHz, which compares

favourably with the measured value of 2.00 GHz (this is a different resonant frequency
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than that quoted in Fig. 10b, the difference being due to more recent TTU structural
adjustments concerning the cathode/anode gap, which we included in our model). The
frequency spectrum is still faitly broad-band, in spite of the presence of a rectangular
septum, Figs. 6 and 7a, b — this situation is typical of vircators. Without a septum the

frequency spectrum is quite chaotic, as shown in Fig. 3b.

1.4.2d Electron trajectories

In order to consider the interaction process in detail it has been decided to create a
movie which would simultaneously trace the movement of some 10, 000 electrons as
they are emitted by the cathode, approach or pass the foil anode and then form a virtual
cathode. The MAGIC code we have used is ideally suited for this kind of investigation.
We then discovered that instead of reflexing radially between real and virtual cathodes, as
postulated by some, the movement of the electrons is much more complicated. First of
all there is a shott petiod lasting some 6 ns, when the electron cloud is being set up, the
electron cloud remaining relatively uniform, as shown in Fig. 27a. We then find that the
electrons split into three distinct groups. The first group does indeed pass through the
semipermeable anode and forms a virtual cathode which then saturates, sending electrons
back towards the cathode, the tepetition of this process giving tise to the usual form of
relaxation oscillations. However not all electrons take part in this process. A second
group of electrons fails to contribute to the virtual cathode and either travels in the axial
direction close to the anode, Fig. 27b or even wraps itself in tight circles round the anode
ring, Fig. 27c. Finally there is a third group of electrons, called ‘stray’ or ‘rogue’ electrons,
which detach themselves from the cloud and travel in bunches down the system, finally
landing either on the anode near the flange or even on the walls of the waveguide, Figs.

27d. All this can be seen very cleatly in the ‘movie’ obtained by observing Figs. 27b-f in
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quick succession on the screen. The stray electrons detract from the propet interaction
process and should be eliminated if at all possible. Figs. 27b-f show a complete cycle of
the interaction process which lasts for T = 0.52 ns, which cottesponds to the f = 1/T =
1.923 GHz and is within 9 % of the oscillation frequency £=2.108 GHz, Fig. 26. The
exact value should have been T = 0.47 ns, but it was difficult to freeze the ‘frame’ which

would correspond more closely to the end of one cycle of oscillations.

1.4.2e Suggestion for an improved design

Having unravelled with the help of Figs. 27a-f some of the intricacies of the cylindrical
vitcator interaction process, we have decided to investigate the possibility of improving
the performance of the tube. An obvious target was to get rid of the so-called stray
electrons mentioned in the previous section. About eight or ten septa of varying
geometry have been investigated, until finally the design shown in Figs. 28a and b proved
to be the best. In addition it was necessary to teplace the semipermeable mesh by solid
metal over one half of its length near the flange, as shown in Fig. 28a. All these changes

required many additional computations, each run lasting for some 12 — 16 houss.

The input and output power pulses are shown in Fig. 29. The model shows that for the
same peak input power of 25.9 GW, the peak output power has grown from 600 to 913
MW, an increase of 52 %. At the same time the electronic efficiency calculated as the
ratio of peak output to peak input power has grown from 2.3 % to 3.5 %, which is quite

a welcome improvement.

Finally the FFT of the output from an E-field probe situated near the end of the

waveguide is shown in Fig. 30. Comparing Figs. 30 and 26 we find that the main
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resonance frequency has shifted upwards from 2.108 to 2.153 GHz, the whole spectrum
being similar to that shown in Fig. 26. The shift in frequency was to be expected since it
has been noted before that the main resonant frequency is very sensitive to the thickness
of the anode ring and the length of the permeable section of the anode. As far as the
‘cleaning up’ of the spectrum is concerned we noted on several occasions that septa have
that effect, presumably by acting somewhat like a quasi-cavity. Here one has to strike
balance between this effect and a drop in power caused by the septum acting as an

obstruction to the flow of power.

33




Conclusions — part 1.

Two main conclusions can be drawn from the above investigations. In the first place we
have established that computer modelling of vircators has reached a degree of
sophistication consistent with its use as a design tool. Secondly we were able to show that
the interaction process between the beam and the e.m. field is not only highly nonlinear
but also very complex, so that an analytical approach would be fraught with difficulties,
computer modelling being the only practical solution. Finally having investigated the
interaction process in some detail we have been able to suggest changes in design which

should increase the microwave power output by some 52%.
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Figures — part 1

Figutre 1 Schematic diagram of a plane vircator.

Figure 2 Cross-section of an eatly model of the TTU vircator.

Figure 3a E_ field intensity as recorded near the output window.
gur o ty tp

Figute 3b Frequency spectrum of the microwave output (FFT of Fig. 3a) — main
resonant peak at 2.73 GHz.

Figure 4 Snapshot of E, contours near the output window.
Figure 5 Snapshot of B , contouts near the output window.

Figute 6 Gun Section of the TTU vircator.

Figure 7a Axial cross-section of the improved TTU vircator model.

Figure 7b Transverse view of the rectangular septum situated in plane A-A’ of Fig. 6a.

Figute 8a Rectangular septum and part of the anode in Cartesian co-ordinates.

Figure 8b Rectangular septum and part of the anode in polar co-ordinates.

Figure 9 Various ways of applying the anode voltage.

Figure 10a Typical vircator output — TTU E-field probe measurements.

Figure 10b Frequency spectrum — fast Fourier transform (FFT) of Fig. 10a — main
resonant peak at 1.834 GHz.

Figure 11 Simulated input power pulse.

Figure 12 Simulated microwave output power pulse.

Figure 13a Simulated E-probe output.

Figure 13b FFT of Fig. 13a — peak resonant frequency at 1.816 GHz.

Figure 14 Resonant frequency as a function of cathode/anode gap.

Figure 15 Peak resonant frequency as a function of axial position of the rectangular
septum, Fig. 8b.

Figure 16 Enlarged smooth edge septum.

Figure 17 Frequency spectrum with enlatged, smooth-edge septum in place.

Figure 18a Axial Cross Section of the interaction region.

Figutre 18b Septum in the form of a circular disc with a rectangular cut-out.

Figure 192 E-field output in the presence of a citcular septum (‘left’position, slot 50mm
wide)

Figure 19b FFT plot of Fig. 19a; main tesonance now at 2.074 GHz.
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Figure 20 Output power pulse in the presence of a circular septum (‘left’ position, slot
50mm wide)

Figure 21 Output power pulse in the presence of a rectangular septum.

Figure 22 Typical TTU input voltage and current pulses.

Figure 23 Typical TTU input power and microwave output power pulses.

Figure 24 Simulation input voltage and current pulses.

Figure 25 Simulation input and microwave output power pulses.

Figure 26 Simulated frequency spectrum — main resonant frequency at 2.108 GHz.

Figure 27a Electron cloud prior to the start of oscillations, t = 6.60 ns.

Figute 27b Electron cloud at t = 20.00 ns; arrow indicating the electrons lingering near
the anode foil and drifting towards the flange.

Figure 27c Electron cloud at t = 20.12 ns; arrow indicating electgrons curling around the
anode supporting ring.

Figure 27d Electron cloud at t = 20.24 ns; arrow indicating electrons moving in bunches
towards the waveguide.

Figure 27e Electron cloud at t = 20.36 ns.

Figute 27f Electron cloud at the end of one cycle of oscillations, t = 20.52 ns.

Figure 28a Cross-section of the vircator-improved design.

Figure 28b New septum design; plane B-B’ of Fig. 28a.

Figure 29 Simulation input and mictowave output power pulses — improved design.

Figure 30 Frequency spectrum — improved design; main resonance at 2.153 GHz.
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Figure 2 Cross-section of an early model of the TTU vircator.
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Figure 3a E, field intensity as recorded near the output window.
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Figure 3b Frequency spectrum of the microwave output (FFT of Fig. 3a) — main resonant peak at 2.73
GHz.
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Figure 4 Snapshot of E,, contours near the output window.
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Figure 7a Axial cross-section of the improved TTU vircator model.
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Anode mesh

Figure 7b Transverse view of the rectangular septum sitnated in plane A-A’ of Fig. 6a.




Figure 8a Rectangular septum and part of the anode in Cartesian co-ordinates.

Figure 8b Rectangular septum and part of the anode in polar co-ordinates.
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Figure 9 Various ways of applying the anode voltage.

46




Figure 10a

Figure 10b
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Frequency spectrum — fast Fourier transform (FFT) of Fig. 10a — main resonant peak at

1.834 GHz,
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Figure 11 Simulated input power pulse.
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Figure 12 Simulated microwave ontput power pulse.
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Figure 13a Simulated E-probe output.
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Figure 136 FFT of Fig. 13a — peak resonant frequency at 1.816 GHz.
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Peak Resonant Frequency Response vs Number of Protruding Emitter Cell
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Figure 14 Resonant frequency as a function of cathode/ anode gap.
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Peak Resonant Frequency Response by Varying Septum Spatial Position
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Figure 15 Peak resonant frequency as a function of axial position of the rectangular septum, Fig. 8b.
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Figure 16 Enlarged smooth edge septum.
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Figure 17 Frequency spectrum with enlarged, smooth-edge septum in place.
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FIELD Erho at RBB.P30.Z1500
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Figure 19a E-field output in the presence of a circular septum (‘left’ position, slot 50mm wide)
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Figure 19b FFT plot of Fig. 19a; main resonance now at 2.074 GHz.
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Figure 20 Output power pulse in the presence of a circular septum (‘left’ position, slot 50mm wide)
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Figure 21 Output power pulse in the presence of a rectangular septum.
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Figure 25 Simulation input and microwave output power pulses.
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Figure 27b Electron cloud at t = 20.00 ns; arrow indicating the electrons lingering near the anode foil

and drifting towards the flange.
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Figure 27¢ Electron clond at t = 20.12 ns; arrow indicating electrons curling around the anode

supporting ring.
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Figure 27d Electron cloud at t = 20.24 ns; arrow indicating electrons moving in bunches towards the

wavegnide.
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Figure 28a Cross-section of the vircator-improved design.
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Part 2.

2.1. Introduction

In principle the electron beam generating element in an axial vircator, such as that shown
in Fig. 1, can be represented by an inverted cylindrical diode with the cathode on the
outside and the anode on the inside [1]. In the case of a vircator it is common to use a
velvet cathode which is capable of delivering very high-density electron emission for a
petiod of ~100 ns. Since the anode is semi-permeable, the electron beam passes through
it virtually unhindeted and entets the space inside the anode, where a virtual cathode can

be formed, Fig. 2. It is this patt of the device which we are now going to consider.

In order to simplify the algebra of the problem we choose plane rather than cylindrical
geometry and use a short-circuited plane diode as a model for the space within the
vircator’s cylindrical anode, see II in Fig. 3. Here we assume that a single-velocity
electron stream is generated in I and enters the inter-electrode space II, the entrance

velocity of the electrons being govetned by the anode/cathode potential difference V, .

Since the diode II is shott-circuited, the exit electrode (collector) is kept at the same
potential as the entrance electrode (anode). Also it is assumed that most of the time the
anode collects no current, its sole purpose being to establish an idealised plane at
potential V, telative to the cathode. In the actual vircator there is no collector and the
electrons gradually lose their radial velocity as they approach the axis, as shown in Fig. 2,
but we would like to suggest that the addition of the collector, which is necessary to

complete the circuit, is not likely to affect the basis of our argument.
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Those of us who still recall vacuum tubes may remember that a system shown in  Fig. 3
was thoroughly analysed by no lesset a man than Shockley [2]. Howevet, he and othets
did it in the absence of a magnetic field and our task will be to see what happens when
we introduce an external magnetic field parallel to the electrodes, as indicated in Fig. 3.
Here, we have limited the presence of the magnetic field to region II; its presence in
region I can be safely ignored, since no virtual cathode would be formed there, region I

metely acting as a source of current for region IL
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2.2. Magnetic diode model

It is generally recognised that the presence of a magnetic field substantially increases the
powet-handling capacity of a microwave tube; this feature greatly contributed to the
success of the so-called M-type devices [3]. A simple physical explanation of the
phenomenon can be gained with the help of Fig. 4, where we have a graphic
representation of the Poisson equation in the absence and in the presence of a magnetic
field. In the absence of the field we have a ‘simple’ form of the Poisson equation given
by (2.1) and shown in Fig. 4, whete cutve (1) is a hyperbola asymptotic to horizontal and

vertical axes.

@.1)

Here we have used the ‘bar’ notation as explained in Appendix 1 in order to simplify the
algebraic form of the equations. The main advantage of the bar notation is that the

distance between the electrodes X =x/d , and the electron entrance velocity ¥V =v/v; are

both equal to unity.

2

In the absence of the magnetic field X =¢ , which leads directly to (2.1). The
introduction of a magnetic field alters the situation substantially since now ¥ # 0 and
2 2

hence the new energy balance is expressed by a =X +Y (see (2.13)). Substituting for

X' in the Poisson equation we now obtain
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The cotresponding curve (2) in Fig. 4 is asymptotic not to the vertical axis ¢ =0, but to

a vertical line ¢ =@%X> >0 and thus lies everywhere above cutve (1). The physical
meaning of the difference between cutves (1) and (2) is quite significant. Let us consider
the conditions at a fixed potential § and a fixed injection cutrent density J,. Fig. 4

indicates that in the presence of the magnetic field the system can absorb a much higher

space-charge density p, curve (2) lying everywhere above curve (1), the difference
growing as we approach ¢ =@ X" . Simplistically one could say that the electrons now

have mote ‘toom’ for manoeuvre, being able to move sideways as well as forward.

Algebraically the difference relies on the fact that only X' enters in the calculation of the

injection cutrent density J_, whereas the energy balance expressed by ¢ incorporates

both X' and ¥'.
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2.3 Solution in terms of time

It is well known that in the analysis of steady-state electron beams it is algebraically much
simpler to use time t rather than distance X as an independent variable, the two

vatiables being intetchangeable, X =X(t) . We propose therefore to carry out our analysis

in tetms of t.

2.3.1 Basic equations

Using our bar notation the usual equations of motion for a single electron in the

presence of a magnetic field are given by:

»l
|

=15, 23)

" = 0eX 24

«<|

whete E = —% , @, =€B/my and @,, is defined in Appendix 1. Similarly in a steady state

the current density is defined by writing:

dE_ =
oo =Lx-F 2.5
= PR =—X (2.5)

Differentiating (2.3) once with respect to time, substituting from (2.4) and then again

from (2.5), we obtain
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X = —EE —@yy" =—=J, —0yX

ot

1=

X"+ DX =5 = const 2.6)

J, being constant in 1D. We can easily recognise (2.6) as the DC part of the Llewellyn-

Peterson equation when a magnetic field is present; the effect of the space charge is
tepresented in (2.6) by the current density term ——;—fc >0, electrons cartying negative

chatge. The solution of (2.6) is quite straightforward bearing in mind that in our notation

we have at the entrance electrode: X; =0, X; =1 and §;=0.

= (1-c) L s— % (9-5) = ——L(1-c) + ——s+—=(6-3) @.7)
(2] Do 2wco Do Do 9000

%=l gy '_]_°2 (1-¢) =- I_:J_' s+c+ %l?_ (1-¢) (2.8
Deo 2a)c() Do 90)c0 ’

X =XC— @S ——=S5 =—&c—5cos+ _l § 2.9

0 2 Do
where
T=t-1,, s=sind@ 7, c=cos@,yT , 8 =47 2.10
1 c0 c0 c0
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-], = gz =9 from (A1.2) 2.12)

Once E, is known for any give 7, the problem of potential and velocity distribution is

solved since X, X' can be obtained from (2.7), (2.8) and ¥, ¥ from integrals of (2.4).

This is a much quicker procedure, especially in the presence of an initial velocity, than
any attempt to solve the Poisson equation (2.2) directly, as was common in the past for a

zero initial velocity [4,5].

At this point it is convenient to introduce the usual energy balance equation. Multiplying

(2.3) by X', (2.4) by ¥, adding and then integrating with respect to t we obtain

@2.13)

SN
Il
>l
+
<

Here we have assumed, bearing in mind Fig. 3, that all electrons start with zero velocity

at a cathode which is at zero potential, so that g, =X, =Y, =0. Thus, at the entrance

electrode we have, by definition (see Appendix 1): X, =0, §, =X; =1, §;=0. Since by

integrating (2.4) once we obtain
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Yy =0,X (2.14)
the substitution of (2.14) in (2.13) yields

2
¢ =X +@°X (2.15)

For a shott-circuited diode we have at the exit electrode X, =@, =1 and the enetgy

balance (2.15) reduces to

X, =1-a@}, (2.16)

Soon we will use (2.16) as one of the boundary conditions.

2.3.2 Derivation of E, (1)

The next step in our investigations is to obtain a relationship between the injection

current density 7 and the electric field at the entrance electrode E, . In the absence of a
magnetic field this relationship can be expressed directly in the form = I(El) by writing

(see (A2.12) in Appendix 2)

g =E, (m 1——E1] @2.17)
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This is no longet possible in the presence of the magnetic field. The best we can do now

is to obtain the relevant curve in its paramettic form by writing (%), E, (1, 7;) whete 7
is the total transit time between the electrodes. By assuming ¥; =0, putting X=X, =1 in

(2.7) and X; =4/1-@% in (2.8), we obtain from the two equations:

E 1 2
1=—"(0-c¢,)+—s, +——(6, —s 2.18
EANDARAr ALY @1
E 21
X, =J1-@% =——L15, +c, +——(1-¢ 2.19
2 c0 2—c0 d d 96(_)020( d) ( )
where
Sq =SIN@, T4, ¢y =COSD Ty, Oy =D, Ty (2.20)

Here as befote the subscripts 1 and 2 refer respectively to entrance and exit electrodes.

Substituting for E, from (2.19) we obtain from (2.18), after some heavy algebra

(1+,/1—530 )tanea‘;cofd)-a’)co
=2

c0 1
2tan (5 ‘Bcofd ] - 500?(1

9
=2 2.21
‘=2 @21)

We can now substitute (2.21) in (2.19) in order to obtain the following expression for the

electric field at the entrance electrode:
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1 _
+ 057 tan(—z—wcord) (2.22)

At the cut-off we have, by definition, X, =4/1-@% =0, so that &, =1 and (2.21), (2.22)

acquite a simpler form given by

tan(l?d)—l
=22 (2.23)
4 tan(lfd)——?d
24) 2
1—tan2(lfd)
E =2 ——;+£tan[%?dJ (2.24)

An exptession similar to (2.21) has been derived by others [6], but their boundary

conditions and notation differ from outs.

A graphical ptesentation of the results is provided in Fig. 5 where we have the electric
field at the entrance electrode E, as a function of the injection current density 1 for

different values of the magnetic field B, expressed in terms of the reduced electron gyro-

frequency @, defined in Appendix 1. Two points of particular interest have been

respectively marked A and B in Fig. 5 and they will be considered separately. It should be
noted that all cutves start at the origin in Fig. 5; this confirms the obvious fact that

irrespective of the value of the magnetic field, the electric field at the entrance electrode

E, =0 in the absence of space charge, =0 or =0 in a single-stream conducting diode.
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Point A

At point A the injection cutrent density 7 reaches its maximum value for a given @ .
The value 7, is obtained by differentiating (2.21) with respect to 7; and then putting

e =0 . After some algebra we obtain

dz,
(1+,/1~5§0)(9d —84) =@, (1-¢4) (2.25)

which must be satisfied by 7, for any given @,,. The maximum value of the injection

current is then given by

T =1, = (2.26)

Here 6, , s; and ¢, are defined in (2.20).

We now find from Fig. 5 that as the magnetic field increases, i.e. as a—);o grows from zero
for B=0 to @,, =1 for the cut-off value B =By, the maximum value of the injection

current ¢ (point A) decreases until it suddenly drops to zero for B >By (not shown). All

this is in agreement with our discussion of the general effect of the magnetic field

presented in Section 2.2. As the magnetic field increases at a fixed value of the space

charge density p the tangential component —Ty grows at the expense of the

petpendicular component -J =-7 =(4/ 9)1 ; thus for B=0 or @,=0 we have
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-—Ty =0, -J >0 and for B>B, or @, >1 we have -—Ty >0,-J =0 (note: =J =0
ot 1=0 does not imply p=0 in the presence of a double-stream flow). Table 2.1 gives
the values of ¢ and 7, =(4/ 9) 1., for several values of the magnetic field expressed
by @,, . The curve joining all the z=1_, or A points is shown dotted in Fig. 5. Fot the

sake of completeness the cortesponding values of the transit time 7, . , the transit angle

6, e = B oTymsx 2nd the electric field at the entrance electrode E, have also been

included.

Typical potential ¢ and velocity X distributions for different values of @,, are shown

in Figs. 6a and b respectively. Here fot typographic convenience we have called the x-

directed velocity U rather than X".

Point B

Let us now consider the second point of intetest, viz point B. It has been shown by
others [7] that in the absence of the magnetic field, @, = 0, all points lying on the lower
branch of the curve between the origin and point A represent stable conditions, whereas
all points between A and B represent unstable solutions, the curve becoming meaningless

beyond B due to the formation of a virtual cathode which introduces discontinuity in .

Physically when an attempt is made to increase the injection current ¢ beyond its

maximum value 7 , the system rapidly collapses: first the potential ¢ and hence the

‘max
electron velocity precipitously drops to zeto, point B in Fig. 5 and then the position of

the virtual cathode is shifted by splitting ¢ into 1, reaching the exit electrode and

4 =1—1, teturning to the entrance electrode. The best physical description of the
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process can be found in [8]. It is now suggested that similar conditions should prevail in

the presence of the magnetic field, ie. that the lower section of each curve for
0<i<1,, would represent stable solutions, whereas the upper part of each curve would
indicate unstable solutions. Since the operation of a vitcator depends on the formation of
a virtual cathode, it is essential to know what happens to it in the presence of a magnetic

field, beating in mind that now @ is no longer equal to X but is given by (2.15).

At this point it is essential to distinguish between two types of instability. In Fig. 9 curve
A’ is stable, curve A is conditionally stable (1 =1, ) and cutve B is inherently unstable;
that means that in the case of cutve B the real part of the cotresponding Llewellyn-
Peterson coefficient (in this case a,,) has a positive real part. In this case of curves A’
and A the real part of a,; is respectively negative and zero. When we attempt to
increase the injection current 7 beyond its maximum value 7, , the system jumps from

solution A , to solution C , momentarily going through a potential distribution
tesembling B (the corresponding idealized ‘stead state’ solution would have 1<y, ).

The solution C is characterised by the appearance of a virtual cathode and the
corresponding pattial reflection of current. Although possible in theory, such a situation
cannot exist in practice, largely due to inhomogeneities of the system. Therefore in
practice the solution becomes unstable, the system continuously relaxing between
solutions with and without a virtual cathode, thus giving rise to oscillations. Exactly the
same argument applies in the presence of the magnetic field, as indicated in Figs. 10a and
b, Fig. 8a merely indicating a generalvscheme of things. What is important from the point
of view of a vircator, that as the magnetic field increases, the amplitude of the

corresponding oscillations decreases until they are finally extinguished when the magnetic
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field approaches its cut-off value. In the limit at the collector v, =0, p=0, 1 =1, 4>

the next step being an abrupt drop of 7 to zetro as the magnetic field increases beyond its

cut-off value, the flow of electrons actoss region II in Fig. 2 ceasing altogether.

Let us continue with our idealised model of an infinitely smooth or jelly-like electron

stteam. The first step in finding point B is to note that the moment of electron

‘hesitancy’ (X' =X =0), which in the absence of the magnetic field is normally referred
to as a “virtual cathode’, is no longer associated with ¢ =0, but occurs at some other

value of ¢ =@, . As an example let us consider electron trajectories for @,, =0.5 and

several values of the injection cutrent 7, as shown in Fig. 7. Clearly there is one value of
1 =1, for which an electron momentatily travels parallel to the cathode, X' =0. We then
find from (2.9) that at the same point we also have X = 0; thus just as was the case for

X' =0 and @, =0, the electron now ‘hesitates’ whether to turn towards the exit or the
entrance electrode. Physically this implies that at point B the electric force —-%EB >0
exactly balances the magnetic force —@,y <0 (see (2.3)). In general point B can be

found by first putting X" =X =0 in (2.8), (2.9) and then expressing E, and 7 in terms

of 75 . This gives us

4 2o2 = 2@
Ty =<ly = = ’ Ep= et (2.27)
1-c4 I-cy
where
Sg =SIN@ Ty , Cg =COSMD 4Ty (2.28)
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(2.27) being a paramettic representation of a curve. The cross section of (2.27) and

E, (t) gives us point B which defines the one particular trajectory for which momentarily

the x-directed velocity and acceleration disappeat, X' =X = 0. For clarity B points have

been connected by a dotted line in Fig. 5. The corresponding values of 4, F;, Ty, 05,

E,; and 7, are shown in Table 2.2.

It should be noted that for the cut-off condition, @, =1 the two points A and B

coalesce, the large loop of the E, =E, (z) curve collapsing to a cusp.

2.3.3 The new ‘virtual cathode’

In the presence of a magnetic field the conditions for virtual cathode have to be
reconsidered. We start by suggesting that #/ B points represent a highly unstable

solution, which is similar to that obtained in the absence of a magnetic field. A more

likely stable solution is shown in Fig. 8a where, following the example of @, =0, we
have abandoned the continuity of ¢ by assuming that only its fraction 2, reaches the exit

electrode (collector), the rest, ie. § =¢—1, turning back and landing on the entrance

electrode (anode). We shall see that this requites a shift in the position of the X" =X =0
plane from Xz to some new position X , an example of corresponding electron

trajectoties for @, = 0.5 being shown in Fig. 8b . However we will show that for a cut-
off magnetic field, B — By ot @,, —>1 from below, the plane X =X must move to the

exit electrode, making then X =X, =1. Since the potential of the exit electrode is kept
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constant, this will destroy the function of a ‘virtual cathode’ and should stop the vircator

oscillations altogether.

When discussing either a diode [7] ot a vircator [10-12] we invariably start with the
assumption that the beam is petfectly smooth. We then discover as we have pointed out
before that in the absence of the magnetic field some solutions are stable and other
solutions are unstable, the unstable solution (B in Fig .9) leading to the discontinuity of
current flow and the formation of a virtual cathode (C in Fig. 9). This is an idealized
situation based on an infinitely smooth model of electron flow. Any departure from that
assumption causes instability and fluctuations in the form of appearance and
disappearance of the virtual cathode, thus forming the basis of operation of a vircator.
Thus in practice the system is capable of generating relaxation oscillations which then
generate electromagnetic oscillations in the output waveguide, Fig. 1. We have followed
exactly the sate path in analyzing the situation in the presence of 2 magnetic field. In the
process we have defined an equivalent of the C distribution, but now in the presence of
the magnetic field (Fig. 8a & C in Fig. 10b), and have shown that the amplitude of the
corresponding virtual cathode oscillations gradually decreases as the magnetic field

increases.

Let us now put the above brief discussion into an algebraic form. First of all we requite

equations of motion which would apply in part a of the inter-electrode space, Fig. 8a.

Since X' =X =0 by definition at X =X, we obtain from (2.7)-(2.9):

= E o 1 _ I
X= 2a_)czo(l c)+a_)_cos+2a_)c30(9 s) (2.29)
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% =0=-ll 5454+ (1-9) (2.30)

20_)c0 2-020

= E . ., 9% .

X' =0=——L1C-@ S +—=3F (2.31)
2 2m,,

whete 8 =@,,7 , § =sin@,,T , € =CoSD,,T (2.32)

T being the electron transit time from the entrance electrode at X=X, =0 to the point
X=X. Here J, is the ‘current’ density in section a of the diode; it consists of the

injection cutrent 7 and the additional part 9] =9 -9, which represents the electrons

teturning to the entrance electrode. Therefore from the point of view of electron space
charge the two current streams travelling in opposite directions must be 4dded and we

write

I, =29 -9y =—(21-1,) (2.33)

since 4, =1, and 9 =9, . In part b of the inter-electrode space the equations of motion

and the boundary conditions are somewhat different. Introducing new variables:

>
]
>
|
o
>
Il
»l
i
»(
I
»

(2.34)

<
]
g
|
¢
I
[
«l
|
i
]
Sl
]
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we can write in place of (2.7)-(2.9):

o4

X=—2(®-8 (2.35)
2a)fo( )

- 9,

X =—2(1-C (2.36)
2a)c20( )

X = {5 S (2.37)
20,

where

~

O=0,T=0,-0=0,(%, -7), S=sin@, T, C=cos@,,T, 5, =5. (239

We note that, by definition, X" =X =0 in the plane X=X and only %, =g—l2 reaches

the exit electrode. Introducing boundary conditions at the exit electrode we now obtain

from (2.35), (2.36):

S - 9
X,=1-x=—2-(0,-S : (2.39)
2 26030( 2 2)

= _ — ;
X, =X, =,/1—w§0 =5a_)%(1—cz) (2.40)
c0
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The system has now been fully specified, since there are five simultaneous equations

(2.29)-(2.31), (2.39), (3.40) and five unknowns: X, J, (ot J; ), 7, 7y and E,, the

values of the magnetic field @,, and the injection cuttent J = g-l being given.

At this point it is preferable to reduce the number of equations from five to two. We do

that by noting that by eliminating E;, we obtain from (2.30), (2.31)

I, = =29 -9, 2.41)

and hence from either (2.30) or (2.31):

1= @&,S
—E, =2 2.42
27 1-¢ @42
Substituting in (2.29) we now obtain
= 0-§
X=——< (2.43)
@, (1-¢)
Eliminating X between (2.39) and (2.43) we have
0-3 I,
=1-—2-(0,-S 2.44
@,,(1-¢) a—;jo( :=5:) @49
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Using now (2.41) to eliminate .7, in favour of ", which is given, we finally obtain

0-% =l_f(1—6)—530
Do (1_5) 530 (1"5)

(®,-5,) C (245)

Also eliminating 9, from (2.39) and (2.40) we obtain, by substituting for X from (2.43)

- 08 _ o @S,

B (1-5) ? a,(1-C,) (249

Using (2.46) the previous equation (2.45) can be further simplified by writing

D 1-22, = [7(1-%)-a} ] 11”_(:52 2.47)

Thus the problem has now been reduced to the solution of two simultaneous algebraic

equations, (2.46), (2.47) with two unknowns, 6 (ot 7 ) and ©,=6, -6 (or
- = = . _ . 4 .
T, =T; =T ), both the magnetic field @,, and the injection curtent J =§l being

given. Once that has been achieved, the temaining unknowns, i.e. X, 9, (ot J, ) and

E, , can be obtained respectively from (2.41)-(2.43). As an example we have in Table 2.3

the values of the above variables for ¢ =1, and six different values of @, .
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Table 2.1 Maxcimum injection current at different values of the magnetic field @,

@y Iax I ax Ty max Ornax E,
0.00 8.0000 3.5556 1.5000 — 2.6667
0.50 7.1360 3.1715 1.5745 0.78722 2.4080
0.80 5.5425 2.4633 1.7518 1.4014 1.8969
0.90 4.6428 2.0635 1.8872 1.6984 1.5837
0.95 4.0082 1.7814 2.0071 1.9067 1.3491
1.00 2.5781 1.1458 2.4120 2.4120 0.76376
Table 2.2 Parameters for defining point B for different values of the magnetic field @,
@Dy Iy A Typ 6—’3 El,g Tp
0.00 4.0000 1.7778 3.0000 — 2.6667 1.50000
0.50 3.5426 1.5745 3.1637 0.8197 2.3017 1.6295
0.80 2.9228 1.2990 3.3840 1.5562 1.6245 1.9344
0.90 2.7262 1.2116 3.2577 1.9146 1.2675 2.1253
0.95 2.6651 1.1845 3.3065 21222 1.0620 2.2458
1.00 2.5781 1.1458 2.4120 2.4120 0.7637 2.4120
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Table 2.3 Conditions at a ‘virtual cathode’ in the presence of a magnetic field @,

@y Lo T 7, X E, A

0.00 8.0000 0.7977 3.0000 0.2659 5.0145 1.8558
0.50 7.1360 0.8481 3.2112 0.2844 4.6455 1.5699
0.80 5.5425 0.9724 3.7588 0.3308 3.9040 1.0718
0.90 4.6428 1.0717 4.2310 0.3687 3.4384 0.8129
0.95 4.0082 1.1630 4.7025 0.4041 3.0822 0.6420
1.00 2.5781 2.4120 2.4120 1.0000 0.7638 (0.0000)
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2.3.4 Numerical examples

Let us now consider some numerical examples by choosing three different cases:
@, =0 (no magnetic field), @, =0.5 and @, =1.0 (cut-off condition). In Fig. 9 we
have four well-known potential distributions when @y, =0 [2]: they are =17, =8.0
(curve A — marginally stable), 1 =1, where 1, is fractionally greater than 7, and thus
genetates a virtual cathode at X =0.2659 (see Table 3.3) and the dotted unstable
potential distribution (cutve B) associated with point B in Fig. 5. This distribution is by-
passed on the way to the 7, distribution, which is nominally stable, curve C. It is well
known that if z=1, is then reduced, the virtual cathode persists until 1=4.0 and
X =0.5, when the potential minimum suddenly jumps to @,, =0.75, thus giving rise to a

new distribution A’. This generates a hysteresis effect which was of great interest in the

past [2] and is now of fundamental importance in the operation of vitcatots.

A word of explanation is required at this point. According to our model, Fig. 3, the value

of the injection current ¢ is determined by the space charge limited diode I; for a fixed
V, we have t=1 when dy=d and ¢ >< 1 for d; <> d. When the potential
distribution in the short-circuited diode II follows A or A’ in Fig. 9, then 1, =7 and
hence 1—4,=0, no curtent flowing from the anode to the battery, the whole of the
injection current ending up on the collector. When we try to increase the injection
current beyond 1 =1, to what we have called ¢z, , the system responds discontinuously
and adopts the potential distribution C. Now only 2, part of the ‘injection current’

reaches the collector, the rest i.e. 1—2, reaching the battery directly via the anode

connection, as shown in Fig. 3. Since more electrons enter the short-circuited diode than
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reach the collector, we allow for it from the space-charge point of view by writing, using
Figs. 82 and 8b, 1, =211, , 4 =1, . Here possible misunderstanding may arise since

following the tradition we use current density, which is a vector quantity, to simulate

space charge density, which is a scalar.

In the presence of the magnetic field the situation is more complex since we now have
¢ =x?+y? £X? =1". Putting @,, =0.5 and 1 =1, =7.1360 from Table 2.1 we now

obtain Fig. 10a, whete again curve A is plotted for 1 =1, and curve C for =1, the
unstable solution B being shown dotted. A similar hysteresis effect is present if we now
start reducing 1, , the zero point of the U’ -curve creeping along until it reaches
X =0.55548 ; the continuity of the cutrent is then momentarily restored at
1=1, =3.5831, but since the distribution is unstable the zero point of the U’ -curve
jumps up to U, =0.6800 to form the minimum of a stable distribution represented by
curve A’. In Fig. 10b we have a similar sequence of events, but now expressed in terms
of the potential distribution ¢ . Here we note that due to the presence of ¥ -directed
velocities the potential function is never equal to zero, even when % =0. Also, if we
compare the size of the U* jump in Fig. 10a, it is only 91% of that in the absence of the
magnetic field, Fig. 9. This trend continues as the magnetic field increases (e.g. 68% for

@, =0.8) and it is bound to affect unfavourably the performance of a vircator.

As another example let us consider the distribution of the velocity function u’ for

different values of the injection current ¢ (or J ) and a fixed value of @, choosing

@, =0.5 and 1.0 as lying at two ends of the range of values of the magnetic field for a
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conducting diode. We find that the value of the injection current has a profound effect

on the shape of the velocity function U’ (i) , as could be inferred from Fig. 3.10. Thus in

the case of @,, =0.5 the cutve cotresponding to zero value of the injection current

exhibits a negative second derivative, wheteas all the other curves shown in Fig. 11a have
a positive second derivative. At the same time the position of the minimum moves
towards the centre as J increases, although it never quite reaches it. The situation is
even more interesting in the cut-off case, ie. for @, =1. Now the only two cutves
which exhibit a2 min/max are those for 1=0 and =1, , the first having a maximum at
the entrance electrode, X =0 and the second having a minimum at the exit electrode,

X =1. The remaining curves exhibit neither a minimum nor a maximum point, but only

an inflexion point at T = %yz , as indicated in Fig. 3.9 for @, =1.

It is interesting to note that unlike the potential ¢ , some U*- curves, in particular those

shown in Fig. 11, exhibit negative curvature over part of the inter-electrode space. This is

in keeping with the corresponding differential equation which is obtained from (2.15)

and (2.2) by writing
du* d% .., I ._
o ?;% ~20; = El -2, (2.48)

The related Fig. 12 cleatly indicates that the second detivative of U° may have both

positive and negative values, the point of inflexion D in Fig. 11b being given by
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As the third example we must now consider the crucial case of @, =1, ie. the ‘cut-off

condition. We find from Table 2.3 that for =1, the point X has moved to the exit
electrode, the corresponding U’ -distribution being shown in Fig. 11b; at the same time
1, disappeats altogether. It is important from our point of view to note that X=%,=1
and thus it is now situated at the collector where 1” =0 and the potential is fixed,
@, =1; consequently any attempt at increasing the injection current from 1, to z,

would be rejected by the system, the excess cutrent 7, —1,. merely flowing back to the

battery through the anode conductor. Thus in this case the hysteresis effect and with it

the generating mechanism for vircator oscillations would disappear altogether.
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2.4 Solutions in terms of distance

In otder to obtain an alternative desctiption of our system, let us now use the distance X
as an independent vatiable and attempt to solve the corresponding Poisson equation. We
would then obtain either the potential ¢ ot the velocity X* directly as functions of X. In

the absence of an initial velocity such solutions have been obtained in a distant past [7,8],
but to our knowledge they have never been extended to the more general case which 1s

of interest to us hete, and which includes the presence of a single initial velocity, in our

case X; =1.

It should be added that in ptinciple (2.7) — (2.9) are adequate to obtain all the

information we requite, since for any given 7 the distance X and the corresponding
velocity X' can be obtained respectively from (2.7) and (2.8), once @, and ¢ have been

chosen. The corresponding potential function a =¢T (i) can then be obtained from

(2.15). Howevet, it seemed desitable for the sake of completeness and as an additional
check on the correctness of our eatlier results to solve the Poisson equation directly. In

1D the two basic equation are given, by the following simplified expressions

-

% = —:—g =—p>0 Poisson equation (2.50)
d- d __, . .

—J. =—(px)=0 Continuity equation (2.51)

dx dx

The latter equation establishes the following important propetty of J_ in 1D
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J, =const (2.52)

Substituting (2.15) in the Poisson equation (2.50) and using our definition for the current

density (2.5) we obtain

- =
9 _ - 7. T 253)
dx X u ¢ - 2%

Hete we have used 9 = —1 and U=X" for typographical convenience. At this point it

is important to note that in the absence of the magnetic field U* = @ , so that the two

functions are identical. This is no longer the case in the presence of the magnetic field, as

is indicated by (2.15). Since now the appearance of a virtual cathode is associated with

U’ =0 and not ¢ =0, we must alter (2.53) in order to obtain U* =U’(X) rather then

$=9 (i) . This also conveniently temoves the independent variable X from the

denominator on the right hand side of (2.53). Differentiating (2.15) twice with respect to

X we obtain.

- 2P (2.54)

and after substitution in (2.53)

=2, (2.55)
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At this point it is important to note that the transition from (3.54) to (3.55) ie. from ¢
to U’ is by no means trivial. Comparing Fig. 12 and Fig. 4 we find that although the
second derivative of ¢ must be always positive in the presence of negatively charged
electrons, this no longer applies to the second derivative of U’ when the magnetic field is

o , , du’ _
present, although thete is a limit on its negative values given by — — -2@2 as
dj{-2 c0

U — 0, the point of inflection occurring when U =-——-. All this is directly related to

c0
the fact that in the ptesence of a magnetic field we have at any given point two

, . 1= . o 2o
competing fotces, the electric force —EE and the magnetic force @,y =@,X , as

indicated in (2.3).

Multiplying both sides of (2.55) by dui’/dX and integrating with respect to X we obtain

| &

=T T-aL5 +C, (2.56)

du* _
—_—=1
dx

N | —
&

It is interesting to compare (2.56) and (A2.15); they are identical except for the presence
of an extra term —@-,0° due to the presence of the magnetic field. It should be noted

that this term opposes the effect of space charge expressed by the J U tetm. A similar
term appears in the presence of positive ions [13], so that, as has already been pointed
out in Section 2.2, the presence of the magnetic field has the effect of increasing the

‘petveance’ of the system.

A second integration with respect to X now leads to the following expression
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iﬂ/y i-a5u’+C, - ‘Z sin”' =xX+C, (2.57)

ch 20)00 yZ +4a7020C1

The above equation substantially differs from (A2.16), largely due to the presence of the

. , , L du’ : _ _
sin™ function, which makes it possible for el to become negative for U > .7, / 232,

as shown in Fig. 3.10. This is quite 2 marked departure from the case of B=0 and is the

basis of the so-called striations observed by others [4].

The first constant of integration C, can be easily eliminated by nothing that U =1 when

X =0. Hence (2.57) reduces to:

i:aiz{\/yﬁ-a‘;;)ﬁz +C, =T -3 +cl}-
c0

—Ssin

2.58
L4 2020-9 . 4 2045-9 @39
—3 |5 2 —2 2 —2
20, JI? +43LC, T2 +4LC,

The other constant of integration is mote difficult to eliminate. In fact, following an
eatlier example [2] indicated in (A2.19), we can choose a new constant which is U, i.e.
the min/max value of the velocity U, when it exists between the electrodes. Writing

dii?/d% =0 on the LHS of (2.56) we obtain
0=9 1, -a,u.+C, (2.59)

ot
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g, = [Yi y2+4wcoc] (2.60)

Substituting in (2.57) we obtain

%o (7 (au) -3 (7 5 -7 (1) -2 (1)

4 4 2050-9 . 20,-F
- sin —Sin
202 2020, - 2040, -9

2.61)

One might argue that in the presence of a min/max between the electrodes the effect of

the constant of integration is somewhat easier to comprehend in (2.61) than (2.58).

Let us now consider some examples of the potential and velocity distribution between

the electrodes. In the absence of a magnetic field we have the well known distributions
shown in Fig. A4. Since in this case ¢7 =17, the two sets of distributions are identical;

they are all symmetrical with a minimum situated exactly in the middle plane at X =0.5.

The situation is somewhat different when the magnetic field is present. In Figs. 3.11 and
3.12 we have respectively the two function ¢ (i) and 0 (3(') for 1=1,, and different
values of @, . We find from Fig. 6a that as @ increases from zeto to 1.0 (cut-off

condition), the position of the potential minimum X shifts from the center towatds the
exit electrode, however the potential at the entrance electrode reaches unity for all values

of @, . The situation is dramatically different in the case of velocity distribution. Due to

the presence of the magnetic field the value of U” at the exit electrode is given by

1-@2, as shown in (2.16); in fact it is zero for @, =1, ie. for the cut-off condition.
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Also the shift of the minimum of the T* function away from the middle plane is much
greater than in the case of the potential function. In fact it can be shown that for @, =1

the position of the potential minimum of the U’ function coincides with the exit

electrode, so that X,, =X, =1.

As another example let us considet the distribution of the velocity function U’ for
different values of the injection curtent z (or 7 ) and a fixed value of @, choosing
@,, =0.5 and 1.0 as lying at two ends of the range of values of the magnetic field for a
conducting diode. We find that the value of the injection current has a profound effect

on the shape of the velocity function U”(X), as could be inferred from Fig. 12. Thus in

the case of @,, =0.5 the curve corresponding to zero value of the injection current

exhibits a negative second detivative, whereas all the other curves shown in Fig. 6b have
a positive second detivative. At the same time the position of the minimum moves

towards the centre as J increases, although it never quite reaches it. The situation is

even more interesting in the cut-off case, ie. for @, =1. Now the only two curves
which exhibit 2 min/max ate those for =0 and 1 =1, the first having a maximum at

the entrance electrode, X =0 and the second having a minimum at the exit electrode,

X =1. The remaining curves exhibit neither a minimum nor a maximum point, but only

— 1 o - _
an inflexion point at U’ = Zy 2, as indicated in Fig. 8a for @, =1.

It should be added that most of the cutves shown in Figs. 6a, b and 11 have been

obtained using time as the independent variable, as explained in Section 2.3, although
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they then have been checked against the much more cumbersome expressions derived in

the present Section.

2.4.1 Zero magnetic field

Let us start our investigation with the simpler case of a zero magnetic field, B=0. The
question of stability of electron flow in a diode, when the system is not space-charge-
limited, came into prominence in the late thirties in connection with the development of
multi-gtid tubes, the power tetrode in particular. The problem was formulated in two
famous papers by Llewellin and Llewellin & Peterson [18], where the steady state
solutions given by Fay et al. [2] have been perturbed by a small a.c. injection current. The
relationship between the injection conditions, and the corresponding output potential,

current and velocity (all ac) is expressed by the well-known 3x3 matrix of @, coefficients.

An excellent summary of the detivation of the @; coefficients is provided in Section 3b

of [19]. A mote detailed discussion of the stability of such solutions based on the enetgy

considerations and also on the algebraic properties of one of the g; coefficients, viz. a;

is provided in Ch. 3 of [7]. As mentioned before a physically convincing ‘explanation’ of
the source of possible instability of the system, using a minimum of mathematics, in

Section 10.6 of [8].

The @, coefficient of the @; matrix relates the dc injection cuttent J, to the ac

potential difference between electrodes @, —g, . Using our bar notation we can write:

¢ - =a,J, (2.63)
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whete from [19, p. 37]

_ 7,0 +0. 1
z, =-i—1'—2-[1-§;(1+zq>4)]
2.64)

since for a short-circuited diode we have in our bar notation (see Appendix 1) the
injection velocity U, =0, =1. Hete 7, is the steady state transit time between the

electrodes and ¢ is the so-called space-charge factor given by two alternative definitions:

é’=3(1——i‘i"—}=3(1—_ij (2.652)
Ty Ty

~J T} 1 _,
= ved o 7 2.65b
4(D,+D,) 18 ¢ (2.65b)

whete T,, is the value of 7, in the absence of space charge and l=—2.7c is the

notmalized injection current density, as defined in Appendix 1 and then used in Fig. 5.

Substituting (2.65b) in (2.64) we obtain

_ o511, 2
3]
L)L 2 (2.66)
io|7, 318
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Since for a shottcircuited diode we have ¢2 =2; , the Lh.s. of (2.63) is zero and we thus

obtain from (2.66) the required relationship

a,=0 or 4,=0,, A¢=2T73 (2.67)
17,

where @, is given by

P, = ———6-3—(2—2—2e'z —ze"’) (2.68)

z

Thus the question of stability of the solutions has now been reduced to the investigation
of (2.67). In the initial derivation of (2.64) the variable z was assumed to be purely
imaginary, z =it , since it related directly to the initial sinusoidal perturbation of the
system by adding an ac tetm to the dc Llewellyn — Peterson equation (2.6). Taking z to be
pure real and introducing some approximations to @, the stability of solutions has
already been discussed by Birdsall [7]. We decided to avoid any approximéu'ons to @, as
being too dangerous, beating in mind that in the presence of a magnetic field the
equivalent of @, acquires quite a complicated fdrm, (2.76). We have therefore adopted a
mote general approach by treating z as a complex variable z =x+iy, keeping (2.68) as it

stands and simply looking for zeros of (2.67).

The real and imaginary parts of @, are respectively shown in Figs. 13 a and b. We find

that in spite of its apparent algebraic complexity the function can be envisaged as a
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simple combination of exponentials along the real x-axis and trigonometric oscillations in

the imaginary iy -direction.

The solution of (2.67) is simplified by the fact that the Lh.s. is pure real, the values of ¢

and 7, directly relating to Fig. 5. Thus in order to solve (2.67) we simply plot the
contours Re @, = 4; and Im @, =0, the points where the two sets of contouts ctoss

being the required solution.

As an example let us consider point A in Fig. 5, which represents the maximum

petmissible value of the injection cutrent in a short-circuited diode given by

t=1,, =8.0, Table 2.1. For @, =0, (2.21) acquires a much simpler form given by (see

A2.8).
1= f—‘:(fd -1) (2.69)
T4

Solving (2.69) for 1=8.0 we obtain 7, =1.5; substituting for both 7z and 7, in (2.55)

we find that
A¢ = —2:7; =1.0000=®, 2.70)
IT;

The superposition of the two sets of contours Re @, =1.0, Im ®, =0.0 is shown in

Fig. 14a, the cotresponding positions of the zeros being indicated by circles. As was to be

expected the important main zero lies at the origin of the complex z-plane, indicating
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that point A represents a conditional equilibtium separating the stable and unstable

regimes of the system.

In order to familiarize ourselves with out technique of testing the stability of solutions,
let us briefly consider two more points, one stable (point A’) and one unstable (point B).
We find from (A2.8), Table 2.2 and Fig. 5 that the important parameters for the two

points are given by:

Table 2.4 Parameters of Points A’ and B

7, ! E, 4,
A 1.0981 4.0000 0.9762 5.0977
B 3.0000 4.0000 2.6667 0.2500

We can now repeat our procedure for solving (2.67) with new values of 4;. Figs. 14b
and c respectively show the contours of Re @, for the two values of 4, given in Table

2.4 and for Im @, =0.0. Again the roots of (2.67) occur where the two sets of contours

ctoss. We now find, as to be expected, that for point A’ the main root of (2.67) lies on
the negative part of the real axis, indicating that the solution is stable. Similarly, the main
root of (2.67) for point B lies on the positive part of real axis, indicating that the solution

is unstable.

At this point it should be clarified that the above analysis, although useful, is highly
idealized. In practice an electron stream is not a homogeneous jelly, but consists of a

large number of individual particles which contribute to noise, the other conttibutions
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being random velocities and random times of emission of individual electrons [20]. This
means that in practice the unstable branch A-B can never be reached, the system
breaking out into relaxation oscillations, forming the basis of operation of a vircator [7].
However the idealized solutions based on (2.6) and Llewellyn - Peterson equations are
useful in proving the fundamental instability of physical situations they represent. Similar

comments apply when the magnetic field is present.

2.4.2 Magnetic field present

In the previous section we have consideted the case of zero magnetic field as a way of
introduction to out relatively straightforward method of investigating the stability of
solutions. Let us now consider the more difficult case when the magnetic field is present.
Fortunately considerable amount of work has been done on the extension of the
Llewellyn-Peterson equations to the case of crossed-field geometries and we are going to
rely heavily on the results of those investigations [21, 22]. The main difference is that the

magnetic field forces us to consider the current flow in two dimensions. Consequently
the usual perturbation of the steady state equation (2.6) now leads to a set of g
coefficients which form a 4x4 rather than 3x3 matrix, as they did before. Since there are

no a.c. components of current or velocity at the entrance electrode, the d.c. injection

current being perpendicular to the entrance electrode, (2.61) still holds, except that now
a,, is much more elaborate than the corresponding expression in (2.64). Using our bar

notation we obtain from [21, p. 82]:
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@.71)

where
I -
P=1-i—s,e" -c,e™ (2.72)
a)C
N7 _ i
Q=1-i—~ts,e" —c,e™
@
and
0=07,, 6, =0,T,, S; =Sin@,T,, Cs =COSMD,T, (2.73)

The new expression for @;; looks quite formidable, fortunately it can be reduced to a

mote manageable form for our particular task of stability investigations.

In (2.71) the coefficient @, is expressed in terms of the initial velocity X; and initial

acceleration X;*. It is more convenient for our purpose to express it in terms of

interelectrode distance X; which in the bar notation is equal to unity by definition (see

(A1.1) in Appendix 1). Thus we can combine the first four terms on the r.h.s. of (2.71)

and wtite with the help of (2.7):

_ % i0J, J,
=———- + +P 2.74
"% oy (a2 -2") 2(a? -5°) (©+5) e

c

105



whete ¥, =1. Now the last two tetms of (2.74) can be combined together. Putﬁng

J, =—-%z, as indicated in (A1.2) and writing ~@°7 = (i@7,)’ =2* we obtain from

2.74)
— X, 2 ioT, 1
ay=——+— - O+P
Yoim 9 (i5)2(53+(ia7)2) (a—)j+(ia7)2)2( )
1 a7, z z
- - P
ia‘)+ 9 22(002+22) (63+22)2(Q+ )
1 2[?3 6 2 2
:—;—a__—)_-+5i—2_;'(-6—c2—;;2—){(00 +z )—Z(Q+P)}
=3
=_-%__.+ 2lrd_ q)4c
io 2T7io
_17 2 &
27w\t ¢
(2.75)
whetre
2
D, = ——6———7{22 —(z2 +t9¢2) —(E——Bc Jsin 6.e” ~2zcos Bce'z} (2.76)
(22+6¢2) 90

The main difference between (2.76) and (2.68) is that @, contains 6, =®,,T, , where
@,, refers to the strength the magnetic field as defined in (A1.1) of Appendix 1. Figs.

17a and b respectively show the real and imaginary patt of @,  for @, =0.8. Strangely

enough in spite of the appatent algebraic complexity of (2.76), the difference in the

appeatrance of the corresponding surfaces in Figs. 17a, b and 13a, b is not that great. It
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should be added that, as was to be expected @,, = D, as 6, = 0. Since the crossed-

field diode we ate considering is short circuited, as indicated in Fig. 3, the Lh.s. of (2.63)

is again zero, leading to

a,=0o0t 4. =0, , 4 =£TZ3— .77
d

which is the equivalent of (2.67) when the magnetic field is present.

The treal and imaginary patts of @, ate respectively shown in Figs. 152 and b for
@, =0.8. It is interesting to note that in spite of the algebraic diversity of (2.68) and

(2.76), cotresponding surfaces representing their real and imaginary parts are remarkably

similat, as can be seen from Figs. 13a, b and 15a, b.

In otder to obtain the roots of (2.77) for the three points A, A’ and B and for different
values of @,,, we follow the same procedute as before, except that instead of using @,
we now use @, , as indicated in (2.77), the corresponding values of ¢ and 7, being

obtained from (2.21), (2.22) and Tables 2.1 and 2.2. The results of our computations are

shown respectively in Figs. 16a-c. In Fig. 16a we have the roots of (2.76) for point A and

for six diffetent values of the magnetic field, including @, = 0. We find that the main

root firmly remains at the otigin, the solution for =1, being conditionally stable,

itrespective of the cottesponding values of the magnetic field.

In the case of point A’ which is situated on the lower branch of the cutves shown in Fig.

5, the main root is always placed on the negative part of the x-axis, as shown in Fig. 16b,
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whatever the value of the magnetic field. The only exception is the limiting case @, =1,

when the three points coalesce, the corresponding root appearing at the origin.

Finally the main roots of (2.77) fot point B are all placed on the positive part of real axis

whatever the value of the magnetic field, the corresponding solutions being
fundamentally unstable. The only exception again is the ‘cut-off’ condition when @, =1;
now the A’-A-B loops of Fig. 5 collapse to a cusp, the solution becoming singular. It
should be added that the A-B branch of each cutve is the equivalent of the well-known

‘overlap’ solution fully discussed for @, =0 elsewhere [2,7].

The above results extend the stability investigations to a conducting crossed-field diode
and thus confirm the validity of the assumptions made in a recent publication [23, special
issue on High-Power Microwave Generation] which covered the results reported in
Section 2.3. The stability investigations, Section 2.5, have been presented in a poster
session at the IEEE Int. Conf. IVEC2002 [24]. It should be added that the method of
stability investigations described above is more general than it would appear from (2.67)

ot (2.77), since it is not limited to a shott-circuited diode. In the presence of a load

d,#0 and (2.63) can then be suitably adjusted to allow for g, — @ #0.
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2.5 Stability considerations

In Section 2.3 we have assumed that some solution of (2.6) are stable or conditionally
stable and that othet solutions ate not. We will now attempt to prove that this indeed is
the case. It is necessaty for us to do so, because the only existing proofs apply to the

simpler case when the magnetic field is not present [7, 8].

The problem of stability, or lack of it, has a long history. It all started with the question
of stability of planetary orbits, possibly fitst raised by Newton, and in greater detail by
Kepler. It was then defined with great precision by Poinearé in his magnum opus on
celestial mechanics [14]. Poinearé also indicated how to treat stability in more general
systems than those based on particle otbits. Almost at the same time Liapunov wrote his
seminal thesis, now available in English [15], on the general approach to the question of

stability in a set of equations of the form

Li=1, .. n 2.62)

It is interesting to note that in the wotk on chaos, where the question of stability is of
crucial importance, it is Liapunov approach in the form of Liapunov exponentials which
seems to prevail [16]. It may not be out of place to repeat here a quotationi from one of
the best textbooks on classical mechanics [17]: ‘the general subject of stability of motion
[of a system] is today a very active field of investigation, often using sophisticated
mathematical tools....” I am sure the author must have had TAKOMAK and plasma
physics in mind when he was writing it. By contrast, in our investigations we are going to
use the simplest mathematics available. In many cases the problem of stability can be

formulated as a small perturbation of the system which may well take the form of a
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dispersion equation. The analysis of the (complex) roots of the perturbed system then
gives us some idea whether the system is stable or unstable. It is this approach we are

going to adopt in our investigations.
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Conclusions — part 2

A plane magnetic diode has been used as a simplified model of the effect that an axial
magnetic field would have on the operation of an axial vircator. Having discussed in
some detail the electron trajectoties, we were able to indicate a hitherto overlooked

solution reminiscent of a virtual-cathode distribution common in the absence of a

magnetic field. Howevet, due to the presence of the magnetic field, U’ =0 does not imply
¢ =0 and the ‘vircator’ effect is weakened. In fact when the magnetic field reaches its
near cut-off value, Gy —»0, the point T =0 moves to the exit electrode, whete the

potential is fixed, g; =1. This must supptess vircator oscillations altogether, an effect

which has been obsetved in practice. A further increase of the magnetic field beyond its

cut-off value would stop the cutrent flow altogether.
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Figures — part 2

Figure 1 Cross-section of a typical coaxial vircator.
Figure 2 Radial electron velocity v, in the middle plane of the anode as a function of

radius t.
Figure 3 The model consisting of a space-chatge limited diode I followed by a short-
circuited crossed-field diode II.

Figure 4 Poisson equation without (1) and with (2) the magnetic field B expressed in

terms of @, .

Figure 5 The electric field at the entrance electrode E, as a function of the injection
current ¢ for diffetent values of the magnetic field expressed by @, .

Figure Ga Potential distribution ¢ =¢ (')E) for 1 =1, and different values of @, .

Figure 6b Velocity distribution u* =1’ (3{’) for 1 =1, and different values of @, .

Figure 7 Electron trajectoties for @ , =0.5 and several values of the injection current 2.

Figutre 8a A possible distribution of current for z>1¢ .

Figure 8b Electron trajectories for @, =0.5 and three different values of the injection
current 7.

Figure 9 Four critical § =’ distributions for @, =0.

Figure 102 Four ctitical velocity distributions for @, =0.5.

Figure 10b Four critical potential distributions for @, =0.5.

Figure 11a The dependence of the velocity function &’ (i) on the injection current 2
for @, =0.5.

Figute 11b The dependence of the velocity function u’ (i) on the injection current ¢
for @, =1.0.

Figure 12 Following (2.48): the second derivative d*0°/dX> as a function of U .
Figure 13a Real part of @, as a function of (x,y).

Figure 13b Imaginary part of @, as a function of (x,y).
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Figure 14a Contours of Re @, = 4, (full line) and Im @, =0 (broken line) for point A;
roots of (2.67) ate marked by circles.

Figure 14b Contours of Re @, = 4, (full line) and Im @, =0 (broken line) for point A’;
roots of (2.67) are marked by circles.

Figure 14c Contours of Re @, = 4, (full line) and Im @, =0 (broken line) for point B;
roots of (2.67) are marked by circles.

Figute 152 Real part of @, as a function of (x,y) for @, =0.8.

Figure 15b Imaginary patt of @, as a function of (x,y) for @, =0.8.
Figure 16a Point A: roots of (2.76) for six different values of the magnetic field

(conditionally stable solutions).

Figure 16b Point A roots of (2.76) for six different values of the magnetic field (stable
solutions).

Figure 16¢ Point B: roots of (2.76) for six different values of the magnetic field (unstable

solutions).
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Figure 1 Cross-section of a typical coaxial vircator.
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Figure 5 The electric field at the entrance electrode B, as a function of the injection current 1 for different

values of the magnetic field excpressed by @, .
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Figure 6a Potential distribution =0 (i) Jor vt =1, and different values of @, .

122



Figure 6b Velocity distribution 0° =0° (i) Jor v=u,, and different values of @, .
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Figure 7 Electron trajectories for @,y =0.5 and several values of the injection current 1.
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Figure 8a A possible distribution of current for 1 > 1, .
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Figure 8b Electron trajectories for @, =0.5 and three different values of the injection current 1.
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Figure 9 Four critical ¢ =0° distributions for @, =0.
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Figure 10a Four critical velocity distributions for @, =0.5.
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Figure 11a The dependence of the velocity function U (')Z) on the injection current 1 for @, =0.5.
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Figure 12 Following (2.48): the second derivative 0% /dX* as a function of U .
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Figure 14a Contours of Re @, = A, (full line) and Im @, =0 (broken line) for point A; roots of
(2.67) are marked by circles.
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Figure 14b Contours of Re ®©, = A, (full line) and Im ®, =0 (broken line) for point A’; roots of
(2.67) are marked by circles.
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Figure 14¢ Contours of Re @, = A, (full line) and Im ®, =0 (broken ling) for point B; roots of

(2.67) are marked by circles.
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Future work

One area which in our opinion requires further investigation is the mode structure of the
microwave output. Since the output waveguide is heavily overmoded and the frequency
specttum of the microwave pulse frequently shows the presence of additional
resonances, a series of careful measurements using suitable waveguide probes would be

requited.

As far as the more general area of improving the performance of the vircator is

concerned, then we have two suggestions to make:

1. In our opinion it is essential to pursue the investigations of the electron cloud
formation in the important interaction region where the virtual cathode is being
formed. This task is substantially facilitated by the technique of ‘moving pictures’
as developed by one of us (X. Chen) and desctibed in the report.

2. Associated with this we feel it is necessaty to investigate even mote closely the
design of the space still inside the anode drum, but nearer to the flange. It is there
that a cleverly designed septum should catch stray electrons and thus improve the
power output and electronic efficiency of the device. All this would invariably

have a beneficial effect on improving the appearance of the frequency spectrum.
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Appendix 1. ‘Bar’ notation

In order to reduce the number of independent variables it is convenient to use the

following notation based on some earlier work [1].

x=x/d, T=t/t, V=v/v, ¢=0/4,
p=(d/5$)p, E=(d/$)E=-0x/0§ (A1)

J, =pv=(d*/gdv)], <0, @,=tw,

Here
d - separation of the electrodes
t, =d/v, - electron transit time in the absence of fields
o, =(e/my)B - electron cyclotron (angular) frequency
B - axial magnetic field

Thus following (A1.1) we always have:

#,=1, v,=(d%/dt), =%; =1 at the entrance electrode, X, =0 and X, =1 at the exit
electrode. In addition for a short-circuited diode @, =1 at the exit electrode. It is also

convenient to express the injection current in terms of a reduced cutrent ‘iota’, where

1= (I )T ) =~

T A1.2
1 (A12)
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and

4[24 _4_gw

gy =2 L

spl—9 0 m dz ’_9 0 d2 (A13)
0

is the current density in an equivalent space-charged limited diode [1].

For purely algebraic reasons we have also introduced a ‘cutly’ capital I defined as
9 = gt (Al1.4)

This simplifies the notation in some cases.
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Appendix 2. Summary of results for a short circuited diode when B=0

As a check on the analytical expressions derived in the presence of a magnetic field, B#0,
it is desirable to compare them with similar, but well-known expressions, for the case of
B=0 [1]. The cotresponding expressions are summarised here for the convenience of the

teader. As is well known in the absence of a magnetic field the equation of motion and

the energy balance equation acquite a simplified form; thus putting @, =0 in (3.2.1) and

(3.2.13) we obtain
X" = igi = —lE Equation of motion (A2.1)
dx 2
2 —
X =¢ Energy balance (A2.2)

However the Poisson equation (3.3.1) and the continuity equation (3.3.2) remain

unaltered.

A2.1 Time-dependent solutions

Let us repeat the definition of the current density (3.2.3) by writing

~|
It
El
"
Il
& &
>
it
s ]|

(A2.3)

Differentiating (A2.1) with respect to t and substituting from (A2.3) we obtain
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lg_ —11 = const (A2.4)
2 2

which is the steady-state part of the Llewellyn-Peterson equation [2]. The solution of

(A2.4) is quite simple and is given by

X=F-LE7+L7 (A2.5)
4 27

—_ 1 = — l —2 )

X=1-—E7+-7 (A2.6)
2 9

X" = —1E, 2z (A2.7)
279

Here we used the same variables as in (3.2.5) — (3.2.7), T ={— being the reduced electron
1

transit time. It is now necessaty to obtain a relationship between the field at the entrance

electrode E, and the injection current z. As the first step we express E, and ¢ in terms

of the reduced fofal transit time 7, . Thus eliminating E, from (A2.7), (A2.8) and bearing

in mind that at the second electrode (collector) X, =1, X;, =1 and 7 =7, we obtain:

1= %(‘fd -1) (A2.8)
T4

Similarly from (A2.6) we obtain
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= 2 _ 12,_
EI =—9—le = z—"—dz(z-d “'l) (A29)

where we have used (A2.8) to eliminate 7. The two equations (A2.8) and (A2.9) are

shown in Fig. Al; they give us the required relationship between E, and 7 in a
patametric form, the parameter being the total transit time 7. In the absence of the

magnetic field we can go a step further and eliminate 7, altogether obtaining a direct

relationship between E, and 7 in any of three forms:

27E] = (72E, -161): (A2.10)

or

zzgﬁl(l-? 1—117:1] (A2.11)
4 3

or

y=1?:1[1$ 1—%EJ (A2.12)

The above equation is shown in Fig. A2 whete the electric field at the entrance electrode
E, is plotted as a function of the injection current 7. As we shall see later only some
parts of the above curve are of physical significance. In patticular point A indicates the

maximum value of the injection current =1 =8.0, which leads to a stable solution
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[3]. Similarly point B corresponds to an unstable solution for which X; =X; =0 or in

this case ¢y =0 and E, =—(—§_£—J =0 from (A2.2) and (A2.1). If we now consider a
X
B

curve which is obtained by putting X' =0 in (A2.6), X" =0 in (A2.7) and then eliminate

the transit time 7 , we obtain
E, =g\ﬂ (A2.13)

The curve, is shown dotted in Fig. A2 and it crosses the original E, = E, (l) curve at

point B.

A2.2 Distance-dependent solutions
In order to obtain solutions in terms of the distance between the electrodes we substitute

(A2.2) directly in the Poisson equation by writing:

d¢ dw* _ T T
g9 _ =P =t ‘A2.14
w L % U (219

Here we have used U =X for convenience of comparison with the results obtained for
=2

the more general case of B#0 . Multiplying both sides of (A2.14) by %l;_— and

integrating we obtain
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1w _qdu_ [7u+C (A2.15)

Integrating once again we obtain

Z%{(ymc,)m—zc1 fﬁ+cl}=3;2,/5fﬁ+cl(yﬁ-zcl)=i+c2

(A2.16)

Now by definition =1 when X=0 and the C, constant can be easily eliminated by

writing:

X, =7 22,/Yﬁ+Cl(fﬁ~2C1)+3—‘;—21/g7+Cl(f—ZCl) (A2.17)

37

Here 0<X_<X, and X <X, <1, where X gives the position of the potential
minimum. Since we are primarily interested in a short circuited diode, we can go a step

further and obtain a direct relationship between C, and ¢ by noting that in this case

u=1, =1 at the exit electrode as well. We then obtain:

4

3;2,/y+c, (7 -2¢), j=-9—’ (A2.18)

1=

As it happens the cutve 7 = t(Cl) is somewhat unwieldy and in this case it is much more

convenient to use a new constants defined by writing
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(A2.19)

1= % J1-1, (1+20,) (A2.20)
l

The function t(ﬁm) is shown in Fig. A3 and is a cubic. We find from (A2.15) that

physically the new constant U, represents the value of velocity at the potential

minimum, where da’/dX =dg /dX=0.

So far we have presented well known facts [1,3] in a form which is convenient for
comparing the tesults with and without the magnetic field, the corresponding potential
distributions being shown in Fig. A4. We find that as ¢ increases, the field at the entrance
electrode also increases until it reaches a maximum value for =8. This corresponds to
the lower branch of the cutve between the origin and point A, Fig. A2. If we attempt to
increase ¢ beyond this point, the potential minimum drops catastrophically down to
zeto, forming a virtual cathode point B, which instantly moves towards the entrance
electtode (anode) in ordet to satisfy the Poisson equation for two space-charge-limited

diodes back to back; at the same time ¢ splits into 2:~z and 3, only the latter part

reaching the second electrode (collector). By then the continuity of : has broken down

and (A2.4) which is based on it no longer applies.
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We can now interpret Fig. A2 as follows: for 0<: <4.0 only a single value of E, satisfies
the equations; for 4.0<: <8.0 there ate two possible values of E; but it can be shown [3]
that the uppet patt of the curve between A and B is unstable, i.e. it can never be reached
in practice; in fact the sudden formation of a virtual cathode and its shift towards the
entrance electrode gives tise to hysteresis effects [1]. The importance of the dotted-curve
is that all points of the E, () cutve lying above it, i.e. all points between B and the origin
ate of no physical significance, since by then our simple equations no longer represent
the system, a virtual cathode having formed between the electrodes and ¢ ceasing to be

continuous.
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